Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Molecular Biology

Fibrosis-The Tale Of H3k27 Histone Methyltransferases And Demethylases, Morgan D. Basta, Svetlana Petruk, Alexander Mazo, Janice L. Walker Jul 2023

Fibrosis-The Tale Of H3k27 Histone Methyltransferases And Demethylases, Morgan D. Basta, Svetlana Petruk, Alexander Mazo, Janice L. Walker

Department of Biochemistry and Molecular Biology Faculty Papers

Fibrosis, or excessive scarring, is characterized by the emergence of alpha-smooth muscle actin (αSMA)-expressing myofibroblasts and the excessive accumulation of fibrotic extracellular matrix (ECM). Currently, there is a lack of effective treatment options for fibrosis, highlighting an unmet need to identify new therapeutic targets. The acquisition of a fibrotic phenotype is associated with changes in chromatin structure, a key determinant of gene transcription activation and repression. The major repressive histone mark, H3K27me3, has been linked to dynamic changes in gene expression in fibrosis through alterations in chromatin structure. H3K27-specific homologous histone methylase (HMT) enzymes, Enhancer of zeste 1 and 2 …


Regulation Of Phosphatase And Tensin Homolog Expression And Activity By Transforming Growth-Factor Beta In The Trabecular Meshwork Cells: Implications For Primary Open Angle Glaucoma, Nikoleta Tellios Jun 2016

Regulation Of Phosphatase And Tensin Homolog Expression And Activity By Transforming Growth-Factor Beta In The Trabecular Meshwork Cells: Implications For Primary Open Angle Glaucoma, Nikoleta Tellios

Electronic Thesis and Dissertation Repository

Glaucoma is a multifactorial condition caused, in part, by fibrosis of the sieve-like trabecular meshwork (TM) tissue, which impedes drainage of aqueous humor (AH), leading to increased intraocular pressure and associated optic nerve damage and blindness. Fibrosis of the TM is mainly caused by the increased levels of active transforming growth factor-β 2 (TGFβ2) in the AH of glaucoma patients.

Previous reports have shown that TGFβ decreases the expression of Phosphatase and Tensin Homolog (PTEN) gene and that PTEN is a major regulator of ECM deposition. In this study we investigate the regulation of PTEN protein expression and …


Inhibiting The Interaction Between Grp94 And Myocilin To Treat Primary Open-Angle Glaucoma, Andrew Stothert Jun 2016

Inhibiting The Interaction Between Grp94 And Myocilin To Treat Primary Open-Angle Glaucoma, Andrew Stothert

USF Tampa Graduate Theses and Dissertations

Glaucoma is a neurodegenerative protein misfolding disorder classified by increases in IOP, damage to retinal ganglion cells (RGCs), optic nerve (ON) head damage, and progressive irreversible blindness. Primary open-angle glaucoma (POAG) is the most common form of glaucoma, constituting over 90% of clinical cases. POAG is observed in patients where normal outflow channels, mainly the trabecular meshwork (TM), are exposed at the angle formed by the iris and cornea. However, due to TM cellular dysfunction, aqueous outflow resistance is increased preventing normal circulation of aqueous humor. Recent studies have shown that in 2-4% of POAG cases, increased intracellular levels of …


Clinical Light Exposure, Photoreceptor Degeneration, And Ap-1 Activation: A Cell Death Or Cell Survival Signal In The Rhodopsin Mutant Retina?, Danian Gu, William Beltran, Zexiao Li, Gregory M. Acland, Gustavo D. Aguirre Feb 2016

Clinical Light Exposure, Photoreceptor Degeneration, And Ap-1 Activation: A Cell Death Or Cell Survival Signal In The Rhodopsin Mutant Retina?, Danian Gu, William Beltran, Zexiao Li, Gregory M. Acland, Gustavo D. Aguirre

Gustavo D. Aguirre, VMD, PhD

PURPOSE. The T4R RHO mutant dog retina shows retinal degeneration with exposures to light comparable to those used in clinical eye examinations of patients. To define the molecular mechanisms of the degeneration, AP-1 DNA-binding activity, composition, posttranslational modification of the protein complex, and modulation of ERK/MAPK signaling pathways were examined in light-exposed mutant retinas. METHODS. Dark-adapted retinas were exposed to short-duration light flashes from a retinal camera used clinically for retinal photography and were collected at different time points after exposure. Electrophoretic mobility shift assay (EMSA), supershift EMSA, Western blot analysis, and immunocytochemistry were used to examine AP-1 signaling. RESULTS. …


Bestrophin Gene Mutations Cause Canine Multifocal Retinopathy: A Novel Animal Model For Best Disease, Karina E. Guziewicz, Barbara Zangerl, Sarah J. Lindauer, Robert F. Mullins, Lynne S. Sandmeyer, Bruce H. Grahn, Edwin M. Stone, Gregory M. Acland, Gustavo D. Aguirre Feb 2016

Bestrophin Gene Mutations Cause Canine Multifocal Retinopathy: A Novel Animal Model For Best Disease, Karina E. Guziewicz, Barbara Zangerl, Sarah J. Lindauer, Robert F. Mullins, Lynne S. Sandmeyer, Bruce H. Grahn, Edwin M. Stone, Gregory M. Acland, Gustavo D. Aguirre

Gustavo D. Aguirre, VMD, PhD

PURPOSE. Canine multifocal retinopathy (cmr) is an autosomal recessive disorder of multiple dog breeds. The disease shares a number of clinical and pathologic similarities with Best macular dystrophy (BMD), and cmr is proposed as a new large animal model for Best disease. METHODS. cmr was characterized by ophthalmoscopy and histopathology and compared with BMD-affected patients. BEST1 (alias VMD2), the bestrophin gene causally associated with BMD, was evaluated in the dog. Canine ortholog cDNA sequence was cloned and verified using RPE/choroid 5′- and 3′-RACE. Expression of the canine gene transcripts and protein was analyzed by Northern and Western blotting and immunocytochemistry. …