Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Molecular Biology

Mistranslating Trnas Alter The Heat Shock Activation By Hsf1, Rebecca Dib Aug 2022

Mistranslating Trnas Alter The Heat Shock Activation By Hsf1, Rebecca Dib

Undergraduate Student Research Internships Conference

Translation, or the production of protein from an mRNA blueprint, is among the most fundamental processes to life as we know it. tRNAs are essential to accurate translation, as they decode the codons of mRNA and recruit corresponding amino acids. Variant tRNAs with anticodon mutations can decrease translational fidelity by recruiting the incorrect amino acid, an aberrant process known as mistranslation. When proteins are produced with incorrect amino acid sequences, they may misfold. The heat shock response functions to alleviate cellular stress caused by misfolded proteins, either by refolding or targeting misfolded proteins for degradation. Hsf1 acts as a transcriptional …


Morphine-Induced Hyperactivity Is Attenuated By Intra-Accumbens Administration Of The Highly-Selective Dopamine D3 Receptor Antagonist Vk4-40, Mansi Patel, Desta M. Pulley, Daniel Manvich May 2022

Morphine-Induced Hyperactivity Is Attenuated By Intra-Accumbens Administration Of The Highly-Selective Dopamine D3 Receptor Antagonist Vk4-40, Mansi Patel, Desta M. Pulley, Daniel Manvich

Rowan-Virtua Research Day

Opioids exert their abuse-related effects by enhancing dopamine (DA) neurotransmission within the brain’s mesolimbic reward system, a neural projection involving DA neurons in the ventral tegmental area (VTA) that project to medium spiny neurons within the nucleus accumbens (NAc). Mu (MOR) are expressed by several populations of GABAergic neurons that tonically inhibit VTA DA neurons. By inhibiting these GABAergic neurons in a MOR-dependent manner, opioids indirectly enhance DA neurotransmission via disinhibition of DAergic neurons. Accumulating evidence indicates that selective pharmacological antagonism of the dopamine D3 receptor (D3R) attenuates the abuse-related effects of several opioids, but the neurobiological mechanisms mediating this …


Long-Term Impacts Of Acute Stressor Exposure On Locus Coeruleus Function And Anxiety-Like Behavior In Rats, Olga Borodovitsyna Apr 2021

Long-Term Impacts Of Acute Stressor Exposure On Locus Coeruleus Function And Anxiety-Like Behavior In Rats, Olga Borodovitsyna

Graduate School of Biomedical Sciences Theses and Dissertations

Stress is a physiological state characterized by behavioral arousal that occurs during exposure to harmful or threatening stimuli, and usually facilitates an adaptive behavioral response. The persistence of stress sometimes causes it to become maladaptive, potentially contributing to disease development, including physiological complications with altered neuroendocrine signaling and impaired function of organ systems, and psychological conditions including depression and anxiety. Anxiety disorders in particular are associated with a history of stress and are the most common class of mental disorders, with a lifetime prevalence of 33.7% in the general population. The locus coeruleus (LC) is a major node in the …


Effect Of S100b Deletion On Membrane Properties And Localization Of Ncald And Hpca, Natasha Hesketh Aug 2020

Effect Of S100b Deletion On Membrane Properties And Localization Of Ncald And Hpca, Natasha Hesketh

Graduate School of Biomedical Sciences Theses and Dissertations

Calcium signaling is particularly important for neuronal function. Neurons utilize a wide range of calcium-binding proteins. Dysregulation of such proteins is linked to neurodegeneration. Neurocalcin delta (NCALD), hippocalcin (HPCA), and S100B are calcium sensors that are expressed in the hippocampus, a brain region essential to memory and severely damaged in Alzheimer’s disease (AD). Despite the potential importance of these proteins, we do not fully understand the physiological significance of their relationship. Because NCALD and HPCA are known to interact with S100B, we hypothesized that the loss of S100B affects NCALD and HPCA localization, and therefore electrical properties, of hippocampal neurons. …


The Current Neuroscientific Understanding Of Alzheimer's Disease, Rachel A. Brandes May 2020

The Current Neuroscientific Understanding Of Alzheimer's Disease, Rachel A. Brandes

Pursuit - The Journal of Undergraduate Research at The University of Tennessee

Alzheimer’s disease is a degenerative neurological illness characterized by the deterioration of brain regions implicated in memory and cognitive function. While researchers have yet to find a cure or effective treatment, they have gained a better understanding of its pathology and development. Through years of neuroscience research, scientists have discovered much of what happens in the brain during Alzheimer’s disease onset and how this causes its symptoms; many hypotheses regarding this aspect of the illness involve temporal lobe atrophy, neurofibrillary tangles, and amyloid plaques. Although Alzheimer’s disease affects millions of people every day, it seems that most are unaware of …


Alzheimer's And Amyloid Beta: Amyloidogenicity And Tauopathy Via Dyshomeostatic Interactions Of Amyloid Beta, Jordan Tillinghast Dec 2019

Alzheimer's And Amyloid Beta: Amyloidogenicity And Tauopathy Via Dyshomeostatic Interactions Of Amyloid Beta, Jordan Tillinghast

Senior Honors Theses

This paper reviews functions of Amyloid-β (Aβ) in healthy individuals compared to the consequences of aberrant Aβ in Alzheimer’s disease (AD). As extraneuronal Aβ accumulation and plaque formation are characteristics of AD, it is reasonable to infer a pivotal role for Aβ in AD pathogenesis. Establishing progress of the disease as well as the mechanism of neurodegeneration from AD have proven difficult (Selkoe, 1994). This thesis provides evidence suggesting the pathogenesis of AD is due to dysfunctional neuronal processes involving Aβ’s synaptic malfunction, abnormal interaction with tau, and disruption of neuronal homeostasis. Significant evidence demonstrates that AD symptoms are partially …


The Role Of Developmental Timing Regulators In Progenitor Proliferation And Cell Fate Specification During Mammalian Neurogenesis, Jennifer S. Romer-Seibert Aug 2018

The Role Of Developmental Timing Regulators In Progenitor Proliferation And Cell Fate Specification During Mammalian Neurogenesis, Jennifer S. Romer-Seibert

Graduate School of Biomedical Sciences Theses and Dissertations

Developmental timing is a key aspect of tissue and organ formation in which distinct cell types are generated through a series of steps from common progenitors. These progenitors undergo specific changes in gene expression that signifies both a distinct progenitor type and developmental time point that thereby specifies a particular cell fate at that stage of development. The nervous system is an important setting for understanding developmental timing because different cell types are produced in a certain order and the switch from stem cells to progenitors requires precise timing and regulation. Notable examples of such regulatory molecules include the RNA-binding …


Analysis Of Differential Mrna And Mirna Expression In An Alzheimer’S Disease Mouse Model, Amanda Hazy, Matthew Dalton Oct 2014

Analysis Of Differential Mrna And Mirna Expression In An Alzheimer’S Disease Mouse Model, Amanda Hazy, Matthew Dalton

Other Undergraduate Scholarship

Research has shown that changes in gene expression play a critical role in the development of Alzheimer’s Disease (AD). Our project will evaluate genome-wide RNA expression patterns from brain and blood in an AD mouse model. This analysis will provide insight regarding the mechanisms of AD pathology as well as determine a possible diagnostic tool utilizing RNA expression patterns found in the blood as biomarkers for AD.


Aβ Alters The Dna Methylation Status Of Cell-Fate Genes In An Alzheimer’S Disease Model, Gary D. Isaacs, Noor Taher, Courtney Mckenzie, Rebecca Garrett, Matthew Baker, Nena Fox Jan 2013

Aβ Alters The Dna Methylation Status Of Cell-Fate Genes In An Alzheimer’S Disease Model, Gary D. Isaacs, Noor Taher, Courtney Mckenzie, Rebecca Garrett, Matthew Baker, Nena Fox

Faculty Publications and Presentations

Alzheimer’s disease (AD) is characterized by neurofibrillary tangles and extracellular amyloid-β plaques (Aβ). Despite ongoing research, some ambiguity remains surrounding the role of Aβ in the pathogenesis of this neurodegenerative disease. While several studies have focused on the mutations associated with AD, our understanding of the epigenetic contributions to the disease remains less clear. To that end, we determined the changes in DNA methylation in differentiated human neurons with and without Aβ treatment. We isolated the DNA from neurons treated with Aβ or vehicle, and digested the two samples with either a methylation-sensitive (HpaII) or a methylation-insensitive (MspI) restriction endonuclease. …


The Role Of The Androgen Receptor Cofactor P44/Wdr77 In Astrocyte Activation, Bryce H. Vincent Aug 2011

The Role Of The Androgen Receptor Cofactor P44/Wdr77 In Astrocyte Activation, Bryce H. Vincent

Dissertations & Theses (Open Access)

Astrogliosis is induced by neuronal damage and is also a pathological feature of the major aging-related neurodegenerative disorders. The mechanisms that control the cascade of astrogliosis have not been well established. In a previous study, we identified a novel androgen receptor (AR)-interacting protein (p44/WDR77) and found that it plays a critical role in the control of proliferation and differentiation of prostate epithelial cells. In the present study, we found that deletion of the p44 gene in the mouse brain caused accelerated aging with dramatic astrogliosis. The p44/WDR77 is expressed in astrocytes and loss of p44/WDR77 expression in astrocytes leads to …


Laser Capture Sampling And Analytical Issues In Proteomics, Howard Gutstein, Jeffrey S. Morris Jan 2007

Laser Capture Sampling And Analytical Issues In Proteomics, Howard Gutstein, Jeffrey S. Morris

Jeffrey S. Morris

Proteomics holds the promise of evaluating global changes in protein expression and post-translational modificaiton in response to environmental stimuli. However, difficulties in achieving cellular anatomic resolution and extracting specific types of proteins from cells have limited the efficacy of these techniques. Laser capture microdissection has provided a solution to the problem of anatomical resolution in tissues. New extraction methodologies have expanded the range of proteins identified in subsequent analyses. This review will examine the application of laser capture microdissection to proteomic tissue sampling, and subsequent extraction of these samples for differential expression analysis. Statistical and other quantitative issues important for …


Prolonged Cyclooxygenase-2 Induction In Neurons And Glia Following Traumatic Brain Injury In The Rat, K I Strauss, M F Barbe, R M Marshall Demarest, R Raghupathi, S Mehta, R K Narayan Aug 2000

Prolonged Cyclooxygenase-2 Induction In Neurons And Glia Following Traumatic Brain Injury In The Rat, K I Strauss, M F Barbe, R M Marshall Demarest, R Raghupathi, S Mehta, R K Narayan

Rowan-Virtua School of Osteopathic Medicine Departmental Research

Cyclooxygenase-2 (COX2) is a primary inflammatory mediator that converts arachidonic acid into precursors of vasoactive prostaglandins, producing reactive oxygen species in the process. Under normal conditions COX2 is not detectable, except at low abundance in the brain. This study demonstrates a distinctive pattern of COX2 increases in the brain over time following traumatic brain injury (TBI). Quantitative lysate ribonuclease protection assays indicate acute and sustained increases in COX2 mRNA in two rat models of TBI. In the lateral fluid percussion model, COX2 mRNA is significantly elevated (>twofold, p < 0.05, Dunnett) at 1 day postinjury in the injured cortex and bilaterally in the hippocampus, compared to sham-injured controls. In the lateral cortical impact model (LCI), COX2 mRNA peaks around 6 h postinjury in the ipsilateral cerebral cortex (fivefold induction, p < 0.05, Dunnett) and in the ipsilateral and contralateral hippocampus (two- and six-fold induction, respectively, p < 0.05, Dunnett). Increases are sustained out to 3 days postinjury in the injured cortex in both models. Further analyses use the LCI model to evaluate COX2 induction. Immunoblot analyses confirm increased levels of COX2 protein in the cortex and hippocampus. Profound increases in COX2 protein are observed in the cortex at 1-3 days, that return to sham levels by 7 days postinjury (p < 0.05, Dunnett). The cellular pattern of COX2 induction following TBI has been characterized using immunohistochemistry. COX2-immunoreactivity (-ir) rises acutely (cell numbers and intensity) and remains elevated for several days following TBI. Increases in COX2-ir colocalize with neurons (MAP2-ir) and glia (GFAP-ir). Increases in COX2-ir are observed in cerebral cortex and hippocampus, ipsilateral and contralateral to injury as early as 2 h postinjury. Neurons in the ipsilateral parietal, perirhinal and piriform cortex become intensely COX2-ir from 2 h to at least 3 days postinjury. In agreement with the mRNA and immunoblot results, COX2-ir appears greatest in the contralateral hippocampus. Hippocampal COX2-ir progresses from the pyramidal cell layer of the CA1 and CA2 region at 2 h, to the CA3 pyramidal cells and dentate polymorphic and granule cell layers by 24 h postinjury. These increases are distinct from those observed following inflammatory challenge, and correspond to brain areas previously identified with the neurological and cognitive deficits associated with TBI. While COX2 induction following TBI may result in selective beneficial responses, chronic COX2 production may contribute to free radical mediated cellular damage, vascular dysfunction, and alterations in cellular metabolism. These may cause secondary injuries to the brain that promote neuropathology and worsen behavioral outcome.