Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics

2018

Institution
Keyword
Publication
Publication Type

Articles 61 - 72 of 72

Full-Text Articles in Molecular Biology

Mrub_1325, Mrub_1326, Mrub_1327, And Mrub_1328 Are Orthologs Of B_3454, B_3455, B_3457, B_3458, Respectively Found In Escherichia Coli Coding For A Branched Chain Amino Acid Atp Binding Cassette (Abc) Transporter System, Bennett Tomlin, Adam Buric, Dr. Lori Scott Jan 2018

Mrub_1325, Mrub_1326, Mrub_1327, And Mrub_1328 Are Orthologs Of B_3454, B_3455, B_3457, B_3458, Respectively Found In Escherichia Coli Coding For A Branched Chain Amino Acid Atp Binding Cassette (Abc) Transporter System, Bennett Tomlin, Adam Buric, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

In this project we investigated the biological function of the genes Mrub_1325, Mrub_1326, Mrub_1327, and Mrub_1328 (KEGG map number 02010). We predict these genes encode components of a Branched Chain Amino Acid ATP Binding Cassette (ABC) transporter: 1) Mrub_1325 (DNA coordinates 1357399-1358130 on the reverse strand) encodes the ATP binding domain; 2) Mrub_1326 (DNA coordinates 1358127-1359899 on the reverse strand) encodes the ATP-binding domain and permease domain; 3) Mrub_1327 (DNA coordinates 1359899-1360930 on the reverse strand) encodes a permease domain; and 4)Mrub_1328 (DNA coordinates 1711022-1712185 on the reverse strand) encodes the substrate binding domain. This system is not predicted to …


Confirmation That Mrub_1751 Is Homologous To E. Coli Xylf, Mrub_1752 Is Homologous To E. Coli Xylh, And Mrub_1753 Is Homologous To E. Coli Xylg, Ben Price, Dr. Lori Scott Jan 2018

Confirmation That Mrub_1751 Is Homologous To E. Coli Xylf, Mrub_1752 Is Homologous To E. Coli Xylh, And Mrub_1753 Is Homologous To E. Coli Xylg, Ben Price, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

In this project we investigated the biological function of the genes Mrub_1751, Mrub_1752 and Mrub_1753 (KEGG map number 02010). We predict these genes encode components of a D-xylose ATP Binding Cassette (ABC) transporter: 1) Mrub_1752 (DNA coordinates 1809004-1810224 on the forward strand) encodes the permease component (aka transmembrane domain), predicted to be an ortholog and 2) Mrub_1753 (DNA coordinates 1810227-1811000 on the forward strand) encodes the ATP-binding domain (aka nucleotide binding domain); and 3) Mrub_1751 (DNA coordinates 1807855-1808892 on the forward strand) encodes the solute binding protein. The ABC-transporter for M. ruber to transport D-xylose is homologous with the transporter …


Mrub_2120, Mrub_2121, Mrub_2122, Mrub_2123 And Mrub_2124 Are Orthologs Of E. Coli Genes B3458, B3457, B3456, B3455 And B3454, Respectively, And Make Up An Operon That Codes For The Branched-Chain Amino Acid Abc Transporter In Meiothermus Ruber Dsm 1279, Aaron Jones, Madelyn Huber, Dr. Lori Scott Jan 2018

Mrub_2120, Mrub_2121, Mrub_2122, Mrub_2123 And Mrub_2124 Are Orthologs Of E. Coli Genes B3458, B3457, B3456, B3455 And B3454, Respectively, And Make Up An Operon That Codes For The Branched-Chain Amino Acid Abc Transporter In Meiothermus Ruber Dsm 1279, Aaron Jones, Madelyn Huber, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

In this project we investigated the biological function of the genes Mrub_2120, Mrub_2121, Mrub_2122, Mrub_2123 and Mrub_2124 (KEGG map number 02010). We predict these genes encode components of a branched-chain amino acid ATP Binding Cassette (ABC) transporter: 1) Mrub_2120 (DNA coordinates 2169247-2170416 on the reverse strand) encodes the branched-chain amino acid binding protein that is localized to the periplasm; 2) Mrub_2121 (DNA coordinates 2170433..2171353 on the reverse strand) encodes the first TMD; 3) Mrub_2122 (DNA coordinates 2171365..2172279 on the reverse strand) encodes the second TMD; 4) Mrub_2123 (DNA coordinates 2172276..2173028 on the reverse strand) encodes the first NBD; 5) Mrub_2124 …


Mrub_1675, Mrub_1676, Mrub_1677, And Mrub_1679 Genes Are Orthologs Of B_3458, B_3457, B_3456, And B_3454 Genes In E. Coli, Respectively, Coding For Abc Transporters. Mrub_1678 And B_3455, Though Perform Similar Tasks, Are Not Orthologous, Ravi Patel, Alaina Hofmann, Dr. Lori Scott Jan 2018

Mrub_1675, Mrub_1676, Mrub_1677, And Mrub_1679 Genes Are Orthologs Of B_3458, B_3457, B_3456, And B_3454 Genes In E. Coli, Respectively, Coding For Abc Transporters. Mrub_1678 And B_3455, Though Perform Similar Tasks, Are Not Orthologous, Ravi Patel, Alaina Hofmann, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

In this project we investigated the biological function of the genes Mrub_1675, Mrub_1676, Mrub_1677, and Mrub_1679 (KEGG map number 02010). We predict these genes encode components of a Branched chain amino acid (ABC) transporter: Mrub_1675 (DNA coordinates 1711022..1712185 on the reverse strand) encodes the permease component, Mrub_1676 (DNA coordinates 1712313..1713170) encodes for the NBD (aka nucleotide binding domain), Mrub_1677 (DNA coordinates 1713167..1714075 on the reverse strand) encodes the NBD (aka nucleotide binding domain), Mrub_1678 (DNA coordinates 1713167..1714075 on the reverse strand) encodes the TMD (aka transmembrane domain) and Mrub_1679 (DNA coordinates 1714781..1715485 on the reverse strand) encodes …


Implementation And Performance Comparison Of Some Heuristic Algorithms For Block Sorting, Sandhya Turlapaty Jan 2018

Implementation And Performance Comparison Of Some Heuristic Algorithms For Block Sorting, Sandhya Turlapaty

UNF Graduate Theses and Dissertations

An implementation framework has been developed in this thesis for a well-known APX-hard combinatorial optimization problem known as Block Sorting. The motivation for the study of this problem comes from applications such as computational biology and optical character recognition. While existing Block Sorting research has been theoretically focused on the development and analysis of several approximation algorithms for Block Sorting, little or no work has been carried out thus far on the implementation of the proposed approximation algorithms. The conceptualization of an implementation framework and illustrating its use by experimenting with the existing approximation algorithms will provide means for discovering …


Role Of Sirna Pathway In Epigenetic Modifications Of The Drosophila Melanogaster X Chromosome, Nikita Deshpande Jan 2018

Role Of Sirna Pathway In Epigenetic Modifications Of The Drosophila Melanogaster X Chromosome, Nikita Deshpande

Wayne State University Dissertations

Eukaryotic genomes are organized into large domains of coordinated regulation. The role of small RNAs in formation of these domains is largely unexplored. An extraordinary example of domain-wide regulation is X chromosome compensation in Drosophila melanogaster males. This process occurs by hypertranscription of genes on the single male X chromosome. Extensive research in this field has shown that the Male Specific Lethal (MSL) complex binds X-linked genes and modifies chromatin to increase expression. The components of this complex, and their actions on chromatin, are well studied. In contrast, the mechanism that results in exclusive recruitment to the X chromosome is …


Processing Of 3′-Blocked Dna Double-Strand Breaks By Tyrosyl-Dna Phosphodiesterase 1, Artemis And Polynucleotide Kinase/ Phosphatase, Ajinkya S. Kawale Jan 2018

Processing Of 3′-Blocked Dna Double-Strand Breaks By Tyrosyl-Dna Phosphodiesterase 1, Artemis And Polynucleotide Kinase/ Phosphatase, Ajinkya S. Kawale

Theses and Dissertations

DNA double-strand breaks (DSBs) containing unligatable termini are potent cytotoxic lesions leading to growth arrest or cell death. The Artemis nuclease and tyrosyl-DNA phosphodiesterase (TDP1) are each capable of resolving protruding 3′-phosphoglycolate (PG) termini of DNA double-strand breaks (DSBs). Consequently, a knockout of Artemis and a knockout/knockdown of TDP1 rendered cells sensitive to the radiomimetic agent neocarzinostatin (NCS), which induces 3′-PG-terminated DSBs. Unexpectedly, however, a knockdown or knockout of TDP1 in Artemis-null cells did not confer any greater sensitivity than either deficiency alone, indicating a strict epistasis between TDP1 and Artemis. Moreover, a deficiency in Artemis, but not TDP1, resulted …


Role Of Glycerol-3-Phosphate Permeases In Plant Defense, Juliana Moreira Soares Jan 2018

Role Of Glycerol-3-Phosphate Permeases In Plant Defense, Juliana Moreira Soares

Theses and Dissertations--Plant Pathology

Systemic acquired resistance (SAR) is a type of plant defense mechanism that is induced after a localized infection and confers broad-spectrum immunity against related or unrelated pathogens. During SAR, a number of chemical signals and proteins generated at the site of primary infection travel to the uninfected tissues and are thought to alert the distal sites against secondary infections. Glycerol-3-phosphate (G3P) is one of the chemical signals that play an important role in SAR. G3P is synthesized in the cytosol and chloroplasts via the enzymatic activities of G3P Dehydrogenase (G3Pdh) or Glycerol Kinase (GK). Interestingly, a mutation in three of …


Wild-Type P53 Enhances Endothelial Barrier Function By Mediating Rac1 Signalling And Rhoa Inhibition, Nektarios Barabutis, Christiana Dimitropoulou, Betsy Gregory, John D. Catravas Jan 2018

Wild-Type P53 Enhances Endothelial Barrier Function By Mediating Rac1 Signalling And Rhoa Inhibition, Nektarios Barabutis, Christiana Dimitropoulou, Betsy Gregory, John D. Catravas

Bioelectrics Publications

Inflammation is the major cause of endothelial barrier hyper-permeability, associated with acute lung injury and acute respiratory distress syndrome. This study reports that p53 "orchestrates" the defence of vascular endothelium against LPS, by mediating the opposing actions of Rac1 and RhoA in pulmonary tissues. Human lung microvascular endothelial cells treated with HSP90 inhibitors activated both Rac1- and P21-activated kinase, which is an essential element of vascular barrier function. 17AAG increased the phosphorylation of both LIMK and cofilin, in contrast to LPS which counteracted those effects. Mouse lung microvascular endothelial cells exposed to LPS exhibited decreased expression of phospho-cofilin. 17AAG treatment …


Evidence For The Involvement Of Runx1 And Runx2 In Maintenance Of The Breast Cancer Stem Cell Phenotype, Mark Fitzgerald Jan 2018

Evidence For The Involvement Of Runx1 And Runx2 In Maintenance Of The Breast Cancer Stem Cell Phenotype, Mark Fitzgerald

Graduate College Dissertations and Theses

In the United States, metastatic breast cancer kills approximately 40,000 women and 400 men annually, and approximately 200,000 new cases of breast cancer are diagnosed each year. Worldwide, breast cancer is the leading cause of cancer deaths among women. Despite advances in the detection and treatment of metastatic breast cancer, mortality rates from this disease remain high because the fact is that once metastatic, it is virtually incurable. It is widely accepted that a major reason breast cancer continues to exhibit recurrence after remission is that current therapies are insufficient for targeting and eliminating therapy-resistant cancer cells. Emerging research has …


Studies Of Norspermidine Uptake In Drosophila Suggest The Existence Of Multiple Polyamine Transport Pathways, Michael Dieffenbach Jan 2018

Studies Of Norspermidine Uptake In Drosophila Suggest The Existence Of Multiple Polyamine Transport Pathways, Michael Dieffenbach

Honors Undergraduate Theses

Polyamines are a class of essential nutrients involved in many basic cellular processes such as gene expression, cell proliferation, and apoptosis. Without polyamines, cell growth is delayed or halted. Cancerous cells require an abundance of polyamines through a combination of synthesis and transport from the extracellular environment. An FDA-approved drug, D,L-α-difluoromethylornithine (DFMO), blocks polyamine synthesis but is ineffective at inhibiting cell growth due to polyamine transport. Thus, there is a need to develop drugs that inhibit polyamine transport to use in combination with DFMO. Surprisingly, little is known about the polyamine transport system in humans and other eukaryotes. Understanding the …


In Silico Modeling Of Epigenetic-Induced Changes In Photoreceptor Cis-Regulatory Elements, Reafa A. Hossain, Nicholas R. Dunham, Raymond A. Enke, Christopher E. Berndsen Dec 2017

In Silico Modeling Of Epigenetic-Induced Changes In Photoreceptor Cis-Regulatory Elements, Reafa A. Hossain, Nicholas R. Dunham, Raymond A. Enke, Christopher E. Berndsen

Ray Enke Ph.D.

No abstract provided.