Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics

PDF

Theses/Dissertations

Institution
Keyword
Publication Year
Publication

Articles 31 - 60 of 393

Full-Text Articles in Molecular Biology

The Sos Response In Escherichia Coli K12: An Exploration Of Mutations In Lexa And Reca Using Fluorescence Microscopy, Steven Van Alstine Oct 2022

The Sos Response In Escherichia Coli K12: An Exploration Of Mutations In Lexa And Reca Using Fluorescence Microscopy, Steven Van Alstine

Doctoral Dissertations

Faithful replication of the genome is paramount for maintaining the fitness of an organism. Therefore, life has evolved inducible mechanisms to be able to repair damaged DNA and maintain evolutionary fitness. The SOS response is a highly conserved DNA damage inducible response that is tightly regulated. Multiple factors contribute to the ability of the cell to perform proper DNA repair and induction of the SOS response including the amount of RecA, mutations in RecA that affect competition for DNA, and other proteins that interact with the RecA filament. The complex relationship between RecA and LexA is the subject of this …


Identification And Characterization Of Genetic Elements That Regulate A C-Di-Gmp Mediated Multicellular Trait In Pseudomonas Fluorescens, Collin Kessler Aug 2022

Identification And Characterization Of Genetic Elements That Regulate A C-Di-Gmp Mediated Multicellular Trait In Pseudomonas Fluorescens, Collin Kessler

Electronic Theses and Dissertations

Microbial communities contain densely packed cells where competition for space and resources are fierce. These communities are generally referred to as biofilms and provide advantages to individual cells against immunological and antimicrobial intervention, dehydration, and predation. High intracellular pools of cyclic diguanylate monophosphate (c-di-GMP) cause cells to aggregate during biofilm formation through the production of diverse extracellular polymers. Genes that encode c-di-GMP catalytic enzymes are commonly mutated during chronic infections where opportunists display enhanced resistance to phagocytosis and antibiotics. Our lab uses an emergent multicellular trait in the model organism Pseudomonas fluorescens Pf0-1 to study the emergence of c-di-GMP mutations …


Dual Mechanisms Implemented By Lin-28 For Positive Regulation Of Hbl-1 Are Necessary For Proper Development Of Distinct Tissues In Caenorhabditis Elegans, Madeleine Minutillo Aug 2022

Dual Mechanisms Implemented By Lin-28 For Positive Regulation Of Hbl-1 Are Necessary For Proper Development Of Distinct Tissues In Caenorhabditis Elegans, Madeleine Minutillo

Graduate School of Biomedical Sciences Theses and Dissertations

In Caenorhabditis elegans, the heterochronic pathway is comprised of a hierarchy of genes that control the proper timing of developmental events. hbl-1 (Hunchback Like-1) encodes an Ikaros family zinc-finger transcription factor that promotes the L2 stage cell fate events of the hypodermis. The downregulation ofhbl-1 is a crucial step for the transition from the L2 to the L3 stage. There are two known processes through which negative regulation of hbl-1 occurs: suppression of hbl-1 expression by 3 let-7 miRNAs through the hbl-1 3’UTR and inhibition of HBL-1 activity by LIN-46. The mechanisms by which hbl-1 is positively regulated have not …


Heat Stress Response And Excystation In Entamoeba Histolytica, Irem Bastuzel Aug 2022

Heat Stress Response And Excystation In Entamoeba Histolytica, Irem Bastuzel

All Dissertations

Entamoeba histolytica is a water- and food-borne intestinal protozoan parasite that causes amoebiasis and liver abscess and is responsible for symptomatic disease in approximately 100 million people each year leading to ~ 100,000 deaths. The most common disease transmission follows the oral-fecal route, but it can also be transmitted by mechanical vectors such as animals carrying the amoeba from contaminated sources to water systems. In rare cases, disease transmission has been recorded in some patients in which men-to-men sexual practices were preferred.

The life cycle of E. histolytica starts through ingestion of infectious cysts, which are non-dividing, quadri-nucleated structures surrounded …


Investigating The Biochemical Properties Of A Novel Mutation, A194v, In Human Rad51, Briana Vollbeer Aug 2022

Investigating The Biochemical Properties Of A Novel Mutation, A194v, In Human Rad51, Briana Vollbeer

All Theses

DNA double-strand breaks (DSB) are one of the most serious DNA lesions because improper repair of a DSB can lead to loss of heterozygosity, aneuploidy, and cancer. One of the primary pathways to repair DSBs is homologous recombination (HR). HR resects the DNA around the DSB and then uses homologous DNA as a template to restore the broken sequence. RAD51 has a vital function in this pathway by forming a nucleoprotein filament on a resected end of the DSB. The nucleoprotein filament searches for homology within the homologous DNA. Once homology is located, strand invasion followed by strand exchange occurs. …


The Effects Of Stress On The Mammalian Nucleolus And Ribosome Synthesis, Russell T. Sapio Aug 2022

The Effects Of Stress On The Mammalian Nucleolus And Ribosome Synthesis, Russell T. Sapio

Graduate School of Biomedical Sciences Theses and Dissertations

Ribosomes are responsible for translating every protein in the cell and are essential in all domains of life. Ribosome biosynthesis (RB) takes place in the nucleolus and is an intricate hierarchical process involving over 200 factors, including ribosomal proteins, ribosomal RNA (rRNA), and trans-acting ribosome biogenesis factors (RBFs). Inhibiting RB can disrupt nucleolar integrity, causing ribosomal- and nucleolar-factors to delocalize. This can stabilize the transcription factor p53, which is normally degraded rapidly, ultimately causing cell cycle arrest or apoptosis, through a mechanism termed the nucleolar stress response (NSR). This thesis explores the effects of inhibiting RB post rRNA transcription and …


Identification Of Genomic, Proteomic, And Metabolomic Signatures Associated With Pulmonary Hypertension Syndrome In Broilers, Duaa Almansaf Aug 2022

Identification Of Genomic, Proteomic, And Metabolomic Signatures Associated With Pulmonary Hypertension Syndrome In Broilers, Duaa Almansaf

Graduate Theses and Dissertations

The present dissertation contains a collection of studies that examine the genomic, proteomic, and metabolomic association to pulmonary hypertension or ascites phenotype in fast-growing broilers. Pulmonary hypertension is a multifactorial metabolic disease influenced by physiological, environmental, and nutritional factors. It is characterized by a number of structural changes including, thrombosis and adverse pulmonary vascular remodeling. Thus, the atrial pressure is increased, and the right ventricle becomes hypertrophied, resulting in heart failure and the death of the bird. Pulmonary hypertension or ascites is a global problem that has negatively impacted the economy. The increased mortality rate of broilers (25%) is estimated …


The Role Of The Hypoxia-Inducible Factor 2 In Pancreatic Cancer: Mechanisms Of Tumor Immunosuppression And Intestinal Radioprotection, Carolina Garcia Garcia Aug 2022

The Role Of The Hypoxia-Inducible Factor 2 In Pancreatic Cancer: Mechanisms Of Tumor Immunosuppression And Intestinal Radioprotection, Carolina Garcia Garcia

Dissertations & Theses (Open Access)

Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with dismal prognosis. The only curative option for patients is surgery, but over 80% of patients are not surgical candidates. Unfortunately, PDAC is resistant to the three remaining options. PDAC is characterized by a profoundly hypoxic and immunosuppressive stroma, which contributes to its therapeutic recalcitrance. Alpha-smooth muscle actin+ (αSMA+) cancer-associated fibroblasts (CAFs) are the most abundant stromal component, as well as mediators of stromal deposition. The hypoxia-inducible factors (HIF1 and HIF2) coordinate responses to hypoxia, yet, despite their known association to poor patient outcomes, their functions within the PDAC tumor microenvironment (TME) …


Characterization Of Genetic Pathways Involved In Resistance To A Novel Antifungal Peptide, Kayla L. Haberman Aug 2022

Characterization Of Genetic Pathways Involved In Resistance To A Novel Antifungal Peptide, Kayla L. Haberman

Graduate Theses and Dissertations

Antibiotic resistance is increasing prevalence, particularly in Candida glabrata. This opportunistic pathogen is closely phylogenetically related to Saccharomyces cerevisiae; however, its characterization is limited. C. glabrata is only second to Candida albicans as a fungal pathogen in immunocompromised patients. Commonly resistant to azoles, the most common fungal therapy, it has become costly and challenging to treat. A histatin 5 derived antifungal peptide, KM29, has a high degree of efficacy in Candida species and S. cerevisiae. The objective of this work is to advance our understanding of the mechanism of action of KM29 against C. glabrata. Previous work in the lab …


Validation Of Whole Genome Resequencing For Mapping The Genetics Of Ascites In Broilers And Viral Susceptibility In Layers, Katherine Pepper Lee Aug 2022

Validation Of Whole Genome Resequencing For Mapping The Genetics Of Ascites In Broilers And Viral Susceptibility In Layers, Katherine Pepper Lee

Graduate Theses and Dissertations

This dissertation focused on the efficacy and validity of whole genome resequencing (WGR) for fine mapping genetic determinants of particular traits in a given organism. Previously, our research group used WGR to identify haplotype blocks of single nucleotide polymorphisms associated with ascites resistance with some as strong candidates for use in marker-assisted selection (MAS). Chapter 2 discusses the completion of a MAS project through evaluation of ascites incidence as well as production traits of economic value to poultry producers. Thus, the MAS project also covered viability of this methodology in the industry. The MAS significantly reduced ascites incidence in broilers …


Modeling Electrostatics In Molecular Biology And Its Relevance With Molecular Mechanisms Of Diseases, Mahesh Koirala Aug 2022

Modeling Electrostatics In Molecular Biology And Its Relevance With Molecular Mechanisms Of Diseases, Mahesh Koirala

All Dissertations

Electrostatics plays an essential role in molecular biology. Modeling electrostatics in molecular biology is complicated due to the water phase, mobile ions, and irregularly shaped inhomogeneous biological macromolecules. This dissertation presents the popular DelPhi package that solves PBE and delivers the electrostatic potential distribution of biomolecules. We used the newly developed DelPhiForce steered Molecular Dynamics (DFMD) approach to model the binding of barstar to barnase and demonstrated that the first-principles method could also model the binding. This dissertation also reflects the use of existing computational approaches to model the effects of Single Amino Acid Variations (SAVs) to reveal molecular mechanisms …


Investigating The Biorisk Of Genetically Engineered Thermosynechococcus Elongatus Bp1, Cherrelle Leah Barnes Aug 2022

Investigating The Biorisk Of Genetically Engineered Thermosynechococcus Elongatus Bp1, Cherrelle Leah Barnes

Chemistry & Biochemistry Theses & Dissertations

Cyanobacteria, also known as blue-green algae, are an ancient group of microorganisms that use simple materials, such as sunlight, carbon dioxide and water, to produce energy while providing oxygen to the atmosphere by performing photosynthesis. Synthetic biology approaches have been employed with cyanobacteria as a platform to produce a range of products, such as biofuels, by inserting a series of genes into the cyanobacterial genome that will allow the conversion of metabolic intermediates to such desired products. Although these methods are promising, it is important to understand any potential bio-risk they pose. This research evaluates the potential bio-risk of genetically …


Investigating The Role Of The Cholesterol Recognition/Interaction Amino-Acid Consensus Sequence In Follicle Stimulating Hormone Receptor Function And Structure, Tatyana Lynn Jun 2022

Investigating The Role Of The Cholesterol Recognition/Interaction Amino-Acid Consensus Sequence In Follicle Stimulating Hormone Receptor Function And Structure, Tatyana Lynn

Honors Theses

Human infertility is a complex disorder that can often be attributed to a dysfunction of the endocrine system. Follicle-stimulating hormone (FSH) is one of many hormones that participate in a complex process in both women and men to regulate normal reproduction. The dysfunction of this hormone and its receptor are some of the many causes of infertility. FSH is secreted by the anterior pituitary and, in women, initiates a cascade of biological events that enable ovulation. FSH carries out its function by binding and activating specific receptors. The FSH receptor (FSHR) is a G protein-coupled receptor (GPCR) that is located …


Cdc6 Is Sequentially Regulated By Pp2a-Cdc55, Cdc14, And Sic1 For Origin Licensing In S. Cerevisiae, Jasmin Philip Jun 2022

Cdc6 Is Sequentially Regulated By Pp2a-Cdc55, Cdc14, And Sic1 For Origin Licensing In S. Cerevisiae, Jasmin Philip

Dissertations, Theses, and Capstone Projects

Control of DNA replication is critical for progression of the cell cycle and genomic stability. Cyclin-dependent kinases (CDKs) coordinate numerous phosphorylation events to accomplish two biological tasks for all living organisms: DNA replication and cell division. One CDK, Cyclin-Cdc28, is responsible for cell cycle progression in budding yeast. DNA replication requires a stepwise assembly of the pre-replicative complex on DNA, including Orc1-6, Cdc6, Cdt1 and Mcm2-7, during M-G1 phase. Cdc6 contains eight Cdc28 consensus sites, SP or TP motifs. Clb5-Cdc28 phosphorylates Cdc6-T7 to recruit Cks1, the Cdc28 phospho-adaptor, for subsequent multisite phosphorylation during S phase. There are two phospho-degrons at …


Defining The Role Of Rare Genetic Variants That Drive Risk And Pathogenesis Of Alzheimer’S Disease, Matthew James Rosene May 2022

Defining The Role Of Rare Genetic Variants That Drive Risk And Pathogenesis Of Alzheimer’S Disease, Matthew James Rosene

Arts & Sciences Electronic Theses and Dissertations

Alzheimer’s disease (AD) is the leading cause of dementia and is pathologically defined by the aggregation of extracellular amyloid plaques and intracellular neurofibrillary tangles. Rare heritable mutations within the genes for amyloid precursor protein (APP) and presenilin 1 (PSEN1), and presenilin 2 (PSEN2) cause early onset AD and account for approximately 1% of AD cases. While the majority of AD cases are late-onset (LOAD), which is defined by a markedly more complex genetic architecture that is comprised of many genetic risk factors that influence AD through multiple cellular pathways. The advent of deep sequencing analyses have allowed for the identification …


A Review Of Current Methods In Avian Dietary Analysis And Their Integrated Application To Characterize The Trophic Niche Of Louisiana Waterthrush (Parkesia Motacilla)., Brandon Hoenig May 2022

A Review Of Current Methods In Avian Dietary Analysis And Their Integrated Application To Characterize The Trophic Niche Of Louisiana Waterthrush (Parkesia Motacilla)., Brandon Hoenig

Electronic Theses and Dissertations

Characterizing a species’ dietary composition presents an avenue to understand many facets of its ecological niche and can provide essential information for the species’ long-term conservation. To date, the vast majority of diet studies have relied on direct identification of prey during foraging observations or from diet samples to characterize the dietary habits of birds. However, advancements in laboratory-based approaches have revolutionized the field of trophic ecology by allowing researchers to indirectly infer dietary habits with higher resolution across greater time scales. Here, I apply two of these laboratory-based techniques, namely DNA metabarcoding and stable isotope analysis, to characterize the …


Investigation Of Dna Variability And Phylogenetic Relationships Of Perlesta (Plecoptera: Perlidae) In Mississippi, James C. Valentine, Mac H. Alford May 2022

Investigation Of Dna Variability And Phylogenetic Relationships Of Perlesta (Plecoptera: Perlidae) In Mississippi, James C. Valentine, Mac H. Alford

Master's Theses

The genus Perlesta Banks, 1906 (Plecoptera: Perlidae) consists of 35 species, 33 native to the United States and Canada and two native to China. For over a century these small, brown stonefly adults and freckled yellow nymphs have gone by the name of the type species of the genus, Perlesta placida, but taxonomic work in the genus since 1989 has resulted in the recognition of additional species. These species were mostly recognized and described using morphological characteristics, but two areas that are lacking include (1) linking nymphs to adults and (2) phylogenetic analysis of all species occurring in Mississippi …


Mechanisms Of Telomere Maintenance In Trypanosoma Brucei, M A G G. Rabbani May 2022

Mechanisms Of Telomere Maintenance In Trypanosoma Brucei, M A G G. Rabbani

ETD Archive

Telomeres are a nucleoprotein structure at the end of the chromosome and are essential for genome integrity and chromosome stability. Telomere lengths are primarily maintained by a telomerase-mediated pathway but can be maintained by a homologous recombination-mediated pathway. However, detailed mechanisms of telomere maintenance are still unclear in many eukaryotes, including an important human pathogen, Trypanosoma brucei. Telomeres can be elongated by telomerase in T. brucei, a causative agent of fatal sleeping sickness in humans and nagana in cattle. T. brucei evades host immune response by regularly switching its major surface antigen, variant surface glycoprotein (VSG), a process known as …


Mechanisms By Which Xenorhabdus Nematophila Interacts With Hosts Using Integrated -Omics Approaches, Nicholas C. Mucci May 2022

Mechanisms By Which Xenorhabdus Nematophila Interacts With Hosts Using Integrated -Omics Approaches, Nicholas C. Mucci

Doctoral Dissertations

Nearly all organisms exist in proximity to microbes. These microbes perform most of the essential metabolic processes necessary for homeostasis, forming the nearly hidden support system of Earth. Microbial symbiosis, which is defined as the long-term physical association between host and microbes, relies on communication between the microbial community and their host organism. These interactions among higher order organisms (such as animals, plants, and fungi) and their bacteria links metabolic processes between interkingdom consortia. Many questions on microbial behavior within a host remain poorly understood, such as the colonization efficiency among different microbial species, or how environmental context changes their …


Novel Regulators Of Cellular Secretion Alter The Tumor Microenvironment To Drive Metastasis, Rakhee Bajaj May 2022

Novel Regulators Of Cellular Secretion Alter The Tumor Microenvironment To Drive Metastasis, Rakhee Bajaj

Dissertations & Theses (Open Access)

Lung cancer is a highly aggressive disease responsible for ~25% of all cancer-related deaths, due in part to its proclivity to metastasize. Treating metastasis holds potential for improving patient survival but requires a deeper investigation into the underlying mechanisms. Some of these processes that can regulate metastasis are: (1) Oncogenic targets of epithelial micro-RNAs (miRNAs) are epigenetically de-repressed upon loss of the miRNAs during epithelial-to-mesenchymal transition (EMT) and in cancer. EMT confers plasticity and fitness to cancer cells promoting their survival through the metastatic cascade. This cascade and EMT are initiated by loss of the miRNA200 family (miR-200) and the …


Molecular Evolution And Biogeography Of The New World Eptesicus Bats, Xueling Yi May 2022

Molecular Evolution And Biogeography Of The New World Eptesicus Bats, Xueling Yi

Theses and Dissertations

Molecular evolution refers to a broad field of studies ranging from microevolution (e.g., population genetics) to macroevolution (e.g., phylogeny), including the bridging field of phylogeography. In natural populations, molecular studies are also combined with biogeography that links biological diversity with geographic distributions to provide a comprehensive understanding of evolutionary processes. The field of molecular evolution has been largely advanced from early exploratory descriptions to statistical tests on biological hypotheses and integrative analyses using sophisticated modeling. However, studies of molecular evolution still face some unresolved questions and challenges, especially in non-model systems. For example, the application of new technology has largely …


An Investigation Of Epigenetic Mechanisms Driving The Biology Of Head And Neck Squamous Cell Carcinoma, Scot Carson Callahan May 2022

An Investigation Of Epigenetic Mechanisms Driving The Biology Of Head And Neck Squamous Cell Carcinoma, Scot Carson Callahan

Dissertations & Theses (Open Access)

Head and neck squamous cell carcinoma (HNSCC) is the 6th most common cancer worldwide and is associated with significant morbidity and mortality. To date, the majority of work in the field has focused on genomic alterations such as mutations and copy number alterations. However, the clinical success of targeted therapies that exploit known genomic alterations, such as EGFR mutations, has remained mixed. Over the past decade, the importance of epigenetic regulators has come to the forefront, with the realization that many of these genes are mutated in cancer. Despite this realization, the role of epigenetics in regulating tumorigenesis, progression and …


The Role Of Ccaat Binding Factor In The Regulation Of Catalase Gene Expression In Candida Albicans, Zahra Al-Rumaih May 2022

The Role Of Ccaat Binding Factor In The Regulation Of Catalase Gene Expression In Candida Albicans, Zahra Al-Rumaih

Graduate Theses and Dissertations

Candida albicans is a fungal opportunistic human pathogen. Its infections range from surficial infections like skin rash to fatal systemic infections. Filamentation growth mode is associated with C. albicans virulence because it helps penetration of the host’s epithelial cells. The CCAAT-binding factor (CBF) is a conserved heterooligomeric transcription factor found in 30% of eukaryotes genes. In C. albicans it is composed of 4 major subunits, including Hap2, Hap3, Hap4, and Hap5. Hap2 and Hap5 are essential for DNA binding and function. Hap4 has 3 homologous subunits: Hap41 and Hap42 are putative subunits of CBP. Hap43 is the only Hap4 subunit …


Mutations In The N-Terminus Of The Mod(Mdg4) Btb Domain Reveal An Unexpected Role Of Mod(Mdg4) In Chromosome Segregation In Female Meiosis, Gwyneth D E Walker, Bruce D. Mckee May 2022

Mutations In The N-Terminus Of The Mod(Mdg4) Btb Domain Reveal An Unexpected Role Of Mod(Mdg4) In Chromosome Segregation In Female Meiosis, Gwyneth D E Walker, Bruce D. Mckee

Chancellor’s Honors Program Projects

No abstract provided.


Improving Photosynthetic Efficiency In Microalgae Through The Genetic Engineering Of Energy Sensors And Photoreceptors, Taylor L. Britton Apr 2022

Improving Photosynthetic Efficiency In Microalgae Through The Genetic Engineering Of Energy Sensors And Photoreceptors, Taylor L. Britton

Biology ETDs

Through photosynthesis microalgae can convert sunlight, water, and CO2 into chemical energy that can be used to generate carbon neutral biofuels and biomass. With an ever-increasing demand and need for petroleum substitutes it is imperative that we improve the output of industrial-relevant crops such as microalgae. One important way of improving output in algae is by understanding the roles that stress and energy conversion is regulated in these organisms. Photosynthetic organisms fundamentally depend on light- and sugar-driven metabolic and signaling networks, which integrate environmental cues to govern and sustain growth and survival. SnRKs (SNF1-related protein kinases) and the photoreceptor …


Screening For Binding Partners And Protein-Protein Interactions Of A Fungal Transcription Factor- Xdr1, Nishadi Punsara Gallala Gamage Mar 2022

Screening For Binding Partners And Protein-Protein Interactions Of A Fungal Transcription Factor- Xdr1, Nishadi Punsara Gallala Gamage

Masters Theses

Clarireedia spp. (formerly Sclerotinia homoeocarpaF.T. Bennett) is the causal agent dollar spot, the most economically important turfgrass disease impacting golf courses in North America. The most effective strategy for dollar spot control is repeated application of multiple classes of fungicides. However, reliance on chemical application has led to resistance to four classes of fungicides as well as multidrug resistance (MDR). Fungi are known to detoxify xenobiotics, like fungicides, through transcriptional regulation of three detoxification phases: modification, conjugation and secretion. Little is known, however, of the protein-protein interactions that facilitate these pathways. Following next-generation RNA sequencing of Clarireedia spp., a …


Illuminating Transfer Rna Variants As Genetic Modifiers In Models Of Human Disease, Jeremy T. Lant Feb 2022

Illuminating Transfer Rna Variants As Genetic Modifiers In Models Of Human Disease, Jeremy T. Lant

Electronic Thesis and Dissertation Repository

Transfer RNAs (tRNAs) physically link the genetic code to an amino acid sequence, by recruiting amino acids to three-nucleotide codons in messenger RNAs. To ensure that the genetic code is translated as intended, tRNAs must be accurately aminoacylated and faithfully recognize codons in the ribosome during protein synthesis. Given the critical function of tRNAs, it has often been assumed that mutations in human tRNA genes would be either lethal to cells or not significantly impair tRNA function. My goal was to rigorously test this assumption in mammalian cell models, prompted by the recent discovery of unprecedented variation in human tRNA …


An Integrative Investigation Of The Synechococcus A/B Clade During Adaptive Radiation At The Upper Thermal Limit Of Phototrophy, Christopher L. Pierpont Jan 2022

An Integrative Investigation Of The Synechococcus A/B Clade During Adaptive Radiation At The Upper Thermal Limit Of Phototrophy, Christopher L. Pierpont

Graduate Student Theses, Dissertations, & Professional Papers

Thermophilic microorganisms have been scientifically observed since the early nineteenth century and have spurred many questions about the limits of life and the capacity of organisms to survive extreme conditions. Decades of research on thermophile proteins and genomes have yielded several proposed correlates of temperature that may contribute to adaptation of bacteria and archaea to high temperature. However, many of the generalizations reported are drawn from analyses of deeply divergent taxa or from individual case studies in isolation from mesophilic relatives. Members of the Synechococcus A/B (SynAB) group are the only cyanobacteria with members able to grow above 65 °C …


Characterization Of Cofilin And Its Potential Role In The Epha4 Pathway, Brian Donald Condron Jan 2022

Characterization Of Cofilin And Its Potential Role In The Epha4 Pathway, Brian Donald Condron

Master's Theses and Doctoral Dissertations

EphA4 is a receptor tyrosine kinase that is responsible for cellular adhesion and locomotion using repulsion signaling in early development of Xenopus laevis. EphA4 regulates cellular locomotion by controlling proteins within its signal transduction pathway, which may include the protein cofilin. Cofilin actively severs and removes actin monomers, thus altering the actin cytoskeleton, leading to the cessation of cellular crawl. During the gastrulation phase of embryonic development, individual cells are relocating to create the three primary germ layers of the organism. Failure of this process to occur results in attrition of the embryos, frequently by way of embryonic exogastrulation. …


Getting To The Root Cause: The Genetic Underpinnings Of Root System Architecture And Rhizodeposition In Sorghum, Farren Smith Jan 2022

Getting To The Root Cause: The Genetic Underpinnings Of Root System Architecture And Rhizodeposition In Sorghum, Farren Smith

Graduate Theses, Dissertations, and Problem Reports

Plants are some of the most diverse organisms on earth, consisting of more than 350,000 different species. To understand the underlying processes that contributed to plant diversification, it is fundamental to identify the genetic and genomic components that facilitated various adaptations over evolutionary history. Most studies to date have focused on the underlying controls of above-ground traits such as grain and vegetation; however, little is known about the “hidden half” of plants. Root systems comprise half of the total plant structure and provide vital functions such as anchorage, resource acquisition, and storage of energy reserves. The execution of these key …