Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Developmental Biology

PDF

University at Albany, State University of New York

Myogenesis

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Molecular Biology

N6-Methyladenosine Rna Modifications In Myogenesis / Narrative Competence And Cognitive Mapping As A Culturally Sustaining Pedagogy In The Education Of Emergent Bilinguals, Marina Danielle Infantado Aug 2022

N6-Methyladenosine Rna Modifications In Myogenesis / Narrative Competence And Cognitive Mapping As A Culturally Sustaining Pedagogy In The Education Of Emergent Bilinguals, Marina Danielle Infantado

Legacy Theses & Dissertations (2009 - 2024)

Myogenesis involves skeletal muscle stem cells (MuSCs) that produce and regenerate skeletal muscle during regular growth and repair. However, when this system fails to function normally, it can lead to musculoskeletal diseases like Duchenne Muscular Dystrophy (DMD). Therefore, it is important to study the molecular mechanisms behind this developmental process in order to seek therapies and solutions for these types of diseases. Our interest lies in the field of epitranscriptomics, which focuses on post-transcriptional ribonucleic acid (RNA) modifications, particularly N6-methyladenosine (m6A), which involves the addition of a methyl group to the adenosine nucleotide, a process that is mediated by the …


The Influence Of Mir-322 On Skeletal Muscle Differentiation, Miles Alexander Soyer Aug 2019

The Influence Of Mir-322 On Skeletal Muscle Differentiation, Miles Alexander Soyer

Legacy Theses & Dissertations (2009 - 2024)

Skeletal muscle plays a crucial role in coordinating voluntary movement and accounts for nearly 50% of total body mass. Dysregulation in skeletal muscle development is known to cause muscle degenerative diseases including the devastating Duchenne Muscular Dystrophy (DMD). The majority of the biological studies investigating muscle development were based on myogenic transcription factors and signaling molecules including: Pax7, Myf5, MyoD, WNT, TGF-β and BMP. After the discovery of non-coding RNAs including microRNAs, it was postulated that these molecules could regulate gene expression and thus affect differentiation and development. MicroRNAs are small non-coding RNAs (~17-25 nucleotides) that regulate gene expression negatively …