Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Molecular Biology

N6-Methyladenosine Rna Modifications In Myogenesis / Narrative Competence And Cognitive Mapping As A Culturally Sustaining Pedagogy In The Education Of Emergent Bilinguals, Marina Danielle Infantado Aug 2022

N6-Methyladenosine Rna Modifications In Myogenesis / Narrative Competence And Cognitive Mapping As A Culturally Sustaining Pedagogy In The Education Of Emergent Bilinguals, Marina Danielle Infantado

Legacy Theses & Dissertations (2009 - 2024)

Myogenesis involves skeletal muscle stem cells (MuSCs) that produce and regenerate skeletal muscle during regular growth and repair. However, when this system fails to function normally, it can lead to musculoskeletal diseases like Duchenne Muscular Dystrophy (DMD). Therefore, it is important to study the molecular mechanisms behind this developmental process in order to seek therapies and solutions for these types of diseases. Our interest lies in the field of epitranscriptomics, which focuses on post-transcriptional ribonucleic acid (RNA) modifications, particularly N6-methyladenosine (m6A), which involves the addition of a methyl group to the adenosine nucleotide, a process that is mediated by the …


Cellular And Developmental Insights Into The Early Evolution Of Muscle, Jeffrey J. Colgren Jan 2020

Cellular And Developmental Insights Into The Early Evolution Of Muscle, Jeffrey J. Colgren

Electronic Theses and Dissertations

Whereas a great deal has been learned about the molecular underpinnings of morphological evolution in animals, much less is known about the origin of novel cell and tissue types. During the time in which the earliest animal lineages were diversifying, fundamental cell and tissue types, such as muscles, arose. Sponges are one of two animal lineages that lack muscles, yet they undergo coordinated full body contractions. Whereas the signaling processes have been studied, the physical mechanisms of contraction are completely uncharacterized. The main purpose of this work is to understand the primary contractile tissue of the sponge Ephydatia muelleri, …


The Influence Of Mir-322 On Skeletal Muscle Differentiation, Miles Alexander Soyer Aug 2019

The Influence Of Mir-322 On Skeletal Muscle Differentiation, Miles Alexander Soyer

Legacy Theses & Dissertations (2009 - 2024)

Skeletal muscle plays a crucial role in coordinating voluntary movement and accounts for nearly 50% of total body mass. Dysregulation in skeletal muscle development is known to cause muscle degenerative diseases including the devastating Duchenne Muscular Dystrophy (DMD). The majority of the biological studies investigating muscle development were based on myogenic transcription factors and signaling molecules including: Pax7, Myf5, MyoD, WNT, TGF-β and BMP. After the discovery of non-coding RNAs including microRNAs, it was postulated that these molecules could regulate gene expression and thus affect differentiation and development. MicroRNAs are small non-coding RNAs (~17-25 nucleotides) that regulate gene expression negatively …


Determination Of The Myogenic Potential Of Human Embryonic Stem Cell-Derived Mesenchymal Stem Cells, Rory Coleman May 2010

Determination Of The Myogenic Potential Of Human Embryonic Stem Cell-Derived Mesenchymal Stem Cells, Rory Coleman

Honors Scholar Theses

Human embryonic stem cells (hESCs) have the potential to

differentiate to all adult somatic cells. This property makes hESCs a very promising area of research for the treatment of disorders in which specific cell populations need to be restored. Despite this potential, research that focuses on producing mesodermally derived cell populations from hESCs is decidedly limited, notwithstanding the prevalence of disorders involving mesodermal tissues for which treatment options are limited. Skeletal muscle myoblasts are derivatives of mesodermal cells and are characterized by the expression of the MyoD gene. These cells are difficult to obtain from hESCs in a reproducible and …