Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Cancer Biology

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 31 - 60 of 249

Full-Text Articles in Molecular Biology

Molecular Mechanisms Of Aberrant Protein Glycosylation In Pancreatic Cancer Stemness And Metastasis, Frank Leon Dec 2021

Molecular Mechanisms Of Aberrant Protein Glycosylation In Pancreatic Cancer Stemness And Metastasis, Frank Leon

Theses & Dissertations

A myriad of genetic and other abnormal changes underlies the aggressiveness and dissemination properties observed in pancreatic cancer (PC). Aberrant protein glycosylation is a commonly observed feature in PC. The modification of protein O-glycosylation is mediated by glycosyltransferases, which attach and sequentially elongate monosaccharides on Serine/Threonine (Ser/Thr) motifs. Aberrant glycosylation is recognized as an emerging hallmark of cancer where a disruption in normal glycosylation results in irregular O-glycans.

This dissertation research has investigated the consequences of aberrant protein glycosylation on stemness and enhancement of metastatic properties in pancreatic ductal adenocarcinoma (PDAC). Several publications have reported aberrant O-glycosylation increases in oncogenic …


Differentiating The Mechanistic Role And Chemotherapeutic Potential Of Src And Podoplanin In Oncogenic Transformation, Edward P. Retzbach Dec 2021

Differentiating The Mechanistic Role And Chemotherapeutic Potential Of Src And Podoplanin In Oncogenic Transformation, Edward P. Retzbach

Graduate School of Biomedical Sciences Theses and Dissertations

There were an estimated 20 million new cancer cases worldwide in 2020, resulting in nearly 1000 deaths per hour [1]. Oral cancer exemplifies the difficulties of treating cancer patients. The first line for oral cancer treatment is surgery and radiation that can lead to patient disfigurement and decreased quality of life in cancer survivors [2-4]. Though there have been many developments in chemotherapy in the last 30 years, the 50% mortality rate associated with oral cancer has not changed [4, 5]. Longitudinal studies that track survival rates in oral cancer patients demonstrate a 3-fold reduction in patient deaths when patients …


Investigating Therapeutic Strategies To Target Metabolic Vulnerabilities Of Nsclc Tumors With Mutant Keap1 Gene, Pranavi Koppula Dec 2021

Investigating Therapeutic Strategies To Target Metabolic Vulnerabilities Of Nsclc Tumors With Mutant Keap1 Gene, Pranavi Koppula

Dissertations & Theses (Open Access)

The metabolic vulnerability of cancers has long been envisaged as an attractive window to develop novel therapeutic strategies. Metabolic flexibility at the cellular level encompasses the efficient rerouting of anabolic and catabolic pathways in response to varying environmental stimuli to maintain cellular homeostasis and sustain proliferation. The primary objective of this study is to identify metabolic vulnerabilities bestowed by KEAP1/NRF2 signaling axis through SLC7A11. SLC7A11 is a transcriptional target of NRF2, an essential regulator of cellular anti-oxidant response. Under unstressed basal conditions, NRF2 interacts with KEAP1, a tumor suppressor gene and a substrate adaptor protein of the Cullin3-dependent ubiquitin ligase …


Molecular Mechanism Of Action Of The Natural Polyphenolic Compound And The P300 Inhibitor “Carnosol” Against The Triple Negative Breast Cance, Halima Ali Mohammed Salem Alsamri Nov 2021

Molecular Mechanism Of Action Of The Natural Polyphenolic Compound And The P300 Inhibitor “Carnosol” Against The Triple Negative Breast Cance, Halima Ali Mohammed Salem Alsamri

Dissertations

Carnosol, a naturally occurring Phyto polyphenol found in sage, oregano, and rosemary, has been extensively studied by our laboratory for its anticancer effects in various types of cancer. In human Triple-Negative Breast Cancer (TNBC), carnosol was shown to inhibit cellular viability, colony growth, induced cell cycle arrest, autophagy, and apoptosis. Nonetheless, very little is known about the molecular mechanism of action. In the current study, the ability of carnosol to inhibit metastasis and tumour growth was examined. Wound healing and invasion assays revealed that carnosol inhibited migration and invasion at non-cytotoxic concentrations of MDA-MB-231 cells. Also, carnosol was found to …


Aurora Kinase A Inhibition Reverses The Warburg Effect And Elicits Unique Metabolic Vulnerabilities In Glioblastoma, Trang T. T. Nguyen, Enyuan Shang, Chang Shu, Sungsoo Kim, Angeliki Mela, Nelson Humala, Aayushi Mahajan, Hee Won Yang, Hasan Orhan Akman, Catarina M. Quinzii, Guoan Zhang, Mike-Andrew Westhoff, Georg Karpel-Massler, Jeffrey N. Bruce, Peter Canoll, Markus D. Siegelin Sep 2021

Aurora Kinase A Inhibition Reverses The Warburg Effect And Elicits Unique Metabolic Vulnerabilities In Glioblastoma, Trang T. T. Nguyen, Enyuan Shang, Chang Shu, Sungsoo Kim, Angeliki Mela, Nelson Humala, Aayushi Mahajan, Hee Won Yang, Hasan Orhan Akman, Catarina M. Quinzii, Guoan Zhang, Mike-Andrew Westhoff, Georg Karpel-Massler, Jeffrey N. Bruce, Peter Canoll, Markus D. Siegelin

Publications and Research

Aurora kinase A (AURKA) has emerged as a drug target for glioblastoma (GBM). However, resistance to therapy remains a critical issue. By integration of transcriptome, chromatin immunoprecipitation sequencing (CHIP-seq), Assay for Transposase-Accessible Chromatin sequencing (ATAC-seq), proteomic and metabolite screening followed by carbon tracing and extracellular flux analyses we show that genetic and pharmacological AURKA inhibition elicits metabolic reprogramming mediated by inhibition of MYC targets and concomitant activation of Peroxisome Proliferator Activated Receptor Alpha (PPARA) signaling. While glycolysis is suppressed by AURKA inhibition, we note an increase in the oxygen consumption rate fueled by enhanced fatty acid oxidation (FAO), which was …


Study Of The Gain-Of-Function Mutant P53 And Parp1 In Triple-Negative Breast Cancer, Devon Lundine Sep 2021

Study Of The Gain-Of-Function Mutant P53 And Parp1 In Triple-Negative Breast Cancer, Devon Lundine

Dissertations, Theses, and Capstone Projects

Cancer cells often lose expression of the p53 protein or express mutant forms of p53. Some of these mutant p53 proteins, called gain-of-function mutant p53, have gained oncogenic functions. Previously, our group observed mutant p53 R273H interacts with replicating DNA and upregulates the chromatin localization of several DNA replication factors including PCNA, MCM2-7, and PARP1 (termed the mtp53-PARP-MCM axis). In this thesis, we explore the contribution of mutant p53 and PARP1 in castration-resistant prostate cancer (mutant p53 P223L and V274F) and triple-negative breast cancer (mutant p53 R273H). In the castration-resistant prostate cancer cell line DU145, we examine two mutant p53 …


Fgfr4 Glycosylation And Processing In Cholangiocarcinoma Promote Cancer Signaling, Andrew J. Phillips Aug 2021

Fgfr4 Glycosylation And Processing In Cholangiocarcinoma Promote Cancer Signaling, Andrew J. Phillips

Theses & Dissertations

Cholangiocarcinoma is a cancer of cholangiocytes, or epithelial cells lining the biliary tract. It is associated with a poor prognosis and additional therapeutic treatments are needed to help patients affected by this disease. Fibroblast growth factor receptor 4 (FGFR4) is receptor tyrosine kinase that is involved in various physiologic and pathologic processes. TCGA analysis of thirty different tumor types showed the highest FGFR4 mRNA levels in cholangiocarcinoma. At the protein level, FGFR4 was observed in the majority of cholangiocarcinomas screened and, higher levels were associated with a poorer prognosis. FGFR4 is an N-linked glycosylated receptor tyrosine kinase that we show …


Decoding The Roles Of Astrocytes And Hedgehog Signaling In Medulloblastoma, Terence Teixeira Duarte, Silvia Aparecida Teixeira, Luis Gonzalez-Reyes, Rui Manuel Reis Aug 2021

Decoding The Roles Of Astrocytes And Hedgehog Signaling In Medulloblastoma, Terence Teixeira Duarte, Silvia Aparecida Teixeira, Luis Gonzalez-Reyes, Rui Manuel Reis

Publications and Research

The molecular evolution of medulloblastoma is more complex than previously imagined, as emerging evidence suggests that multiple interactions between the tumor cells and components of the tumor microenvironment (TME) are important for tumor promotion and progression. The identification of several molecular networks within the TME, which interact with tumoral cells, has provided new clues to understand the tumorigenic roles of many TME components as well as potential therapeutic targets. In this review, we discuss the most recent studies regarding the roles of astrocytes in supporting sonic hedgehog (SHH) subgroup medulloblastoma (MB) and provide an overview of MB progression through SHH …


The Regulation Of Pannexin1 And Pannexin2 In The Skin In Health And Disease, Rafael E. Sanchez Pupo Aug 2021

The Regulation Of Pannexin1 And Pannexin2 In The Skin In Health And Disease, Rafael E. Sanchez Pupo

Electronic Thesis and Dissertation Repository

Pannexins (PANX1, 2, 3) are a family of channel-forming glycoproteins that mediate intracellular and paracrine signaling. In contrast to PANX2, PANX1 has been extensively investigated in the skin, modulating cell differentiation, wound healing, and melanoma development. PANX1 and PANX2 can co-exist in the same cell and form mixed channels where their glycosylation seems to regulate their intermixing. N-glycosylation and caspase cleavage have been proposed as modulators of the function of PANX1, but their effects on PANX2 are unknown. We explored the PANX2 expression in mouse skin and showed that a Panx2 splice variant (PANX2-202) is continuously expressed throughout aging skin. …


Npsd4: A New Player In Sumo-Dependent Dna Repair, Erin Atkinson Aug 2021

Npsd4: A New Player In Sumo-Dependent Dna Repair, Erin Atkinson

Dissertations & Theses (Open Access)

The human genome is under constant threat from sources of damage and stress. Improper resolution of DNA damage lesions can lead to mutations, oncogene activation, and genomic instability. Difficult-to-replicate-loci present barriers to DNA replication that, when not properly resolved, lead to replication fork stalling and collapse and genomic instability.

DNA damage and replication stress trigger signaling cascades potentiated by multiple types of post-translational modifications, including SUMOylation. Through proteomic analysis of proteins involved in SUMOylation following DNA damage, our lab identified an uncharacterized protein that we named New Player in SUMO-dependent DNA damage repair 4 (NPSD4). Through an additional proteomic screen, …


The Characterization Of Angiopoietin-Like Protein 4 Overexpression In Triple Negative Breast Cancer, Jodi Simeon Jul 2021

The Characterization Of Angiopoietin-Like Protein 4 Overexpression In Triple Negative Breast Cancer, Jodi Simeon

Graduate Theses and Dissertations

Triple Negative Breast Cancer (TNBC) is highly invasive and metastatic with approximately 15% of patients developing liver metastases. The primary treatment of metastatic TNBC is chemotherapy, however, there is an increased chance of resistance to this therapeutic technique. If Breast Cancer Liver Metastasis (BCLM) is left untreated most patients survive only 4 to 8 months with a very rare 5-year survival. Therefore, it is imperative to analyze markers and molecular pathways that TNBC cells use to progress, invade, and metastasize to the liver. The aim of this study was to examine the overexpression of angiopoietin-like 4 (ANGPTL4) in TNBC cells …


A Time-Course Characterization Of Muscle Function And Mitochondrial Markers During Colorectal Cancer-Induced Cachexia In Tumor-Bearing Male Mice, Ana Cabrera Ayuso Jul 2021

A Time-Course Characterization Of Muscle Function And Mitochondrial Markers During Colorectal Cancer-Induced Cachexia In Tumor-Bearing Male Mice, Ana Cabrera Ayuso

Graduate Theses and Dissertations

Cachexia is a multisystemic and multifactorial syndrome prevalent in cancer patients. It is clinically defined by involuntary loss of >5% weight in a six-month window, despite nutritional interventions. A negative energy balance characterizes cancer cachexia (CC), it is associated with weakness and fatigue in skeletal muscle. Impaired muscle function is associated with lower quality of life in cancer patients. Defects in mitochondrial function are strongly associated with muscle wasting. This study explored muscular contractile function and mitochondrial quality control (MQC) markers in soleus, gastrocnemius, and tibialis anterior (TA) muscles of C26-induced male tumor-bearing mice during a 25-day time course. It …


Identifying The Cell Composition And Clonal Diversity Of Supratentorial Ependymoma Using Single Cell Rna-Sequencing, James He May 2021

Identifying The Cell Composition And Clonal Diversity Of Supratentorial Ependymoma Using Single Cell Rna-Sequencing, James He

Honors Scholar Theses

Ependymoma is a primary solid tumor of the central nervous system. Supratentorial ependymoma (ST-EPN), a subtype of ependymomas, is driven by an oncogenic fusion between the ZFTA and RELA genes in 70% of cases. We introduced this fusion into neural progenitor cells of mice embryos via in utero electroporation of a non-viral binary piggyBac transposon system containing ZFTA-RELA. From preliminary data in the LoTurco lab, inducing the expression of ZFTA-RELA into different neural progenitor cells produces tumors of varying lethality and cellular composition. To define the cellular composition and subclonal diversity of ST-EPN tumors, we used single cell RNA-sequencing …


Role Of Endocytic Machinery Regulators In Egfr Traffic And Viral Entry, Insha Mushtaq May 2021

Role Of Endocytic Machinery Regulators In Egfr Traffic And Viral Entry, Insha Mushtaq

Theses & Dissertations

STUDY 1: Role of endocytic regulator EHD1 and its binding partner RUSC2 in EGFR traffic

Abstract

Epidermal growth factor receptor (EGFR) is a prototype receptor tyrosine kinase and an oncoprotein in many solid tumors. Cell surface display of EGFR is essential for cellular responses to its ligands. While post activation endocytic trafficking of EGFR has been well elucidated, little is known about mechanisms of basal/pre-activation surface display of EGFR. Here, we identify a novel role of the endocytic regulator EHD1 and a potential EHD1 partner, RUSC2, in cell surface display of EGFR. EHD1 and RUSC2 colocalize with EGFR in vesicular/tubular …


The Biochemical Characterization Of Aza197 And A Ras Related Protein Cdc42, Alix Montoya-Beltran May 2021

The Biochemical Characterization Of Aza197 And A Ras Related Protein Cdc42, Alix Montoya-Beltran

Graduate Theses and Dissertations

Eukaryotic cells contain an extensive amount of GTP/GDP binding proteins. Proteins known as Ras GTPase primary function as a binary switch, where they cycle from an on and off state when GTP or GDP are bound, respectively. They are known to play a critical role in many cellular functions where a dysregulation could potentially lead to oncogenic behavior or other malignancies. In our laboratory, our focus is the study of a Ras related protein Cell division control 42 homolog (Cdc42) which belongs to the Rho subfamily. Cdc42 plays a critical role in many biological signaling processes; therefore, its uncontrol gene …


Investigating A Novel Function For Phosphoserine Aminotransferase 1 (Psat1) In Epidermal Growth Factor Receptor (Egfr)-Mediated Lung Tumorigenesis., Rumeysa Biyik-Sit May 2021

Investigating A Novel Function For Phosphoserine Aminotransferase 1 (Psat1) In Epidermal Growth Factor Receptor (Egfr)-Mediated Lung Tumorigenesis., Rumeysa Biyik-Sit

Electronic Theses and Dissertations

Phosphoserine aminotransferase 1 (PSAT1) catalyzes the second enzymatic step within the serine synthetic pathway (SSP) and its expression is elevated in numerous human cancers, including non-small cell lung cancer (NSCLC). Epidermal growth factor receptor (EGFR) mutant NSCLC is characterized by activating mutations within its tyrosine kinase domain and accounts for 17% of lung adenocarcinomas. Although elevated SSP activity has been observed in EGFR-mutant lung cancer cells, the involvement of PSAT1 in EGFR-mediated oncogenesis is still unclear. Here, we explore a putative non-canonical function for PSAT1 using biochemical approaches to elucidate unknown interacting proteins and genomic RNA-seq profiling to identify cellular …


A High-Throughput Approach To Characterizing Arv1 On The Regulation Of Lipid Homeostasis Uncovers A Novel Interaction With Epidermal Growth Factor Receptor, Nicholas Anthony Wachowski Apr 2021

A High-Throughput Approach To Characterizing Arv1 On The Regulation Of Lipid Homeostasis Uncovers A Novel Interaction With Epidermal Growth Factor Receptor, Nicholas Anthony Wachowski

Graduate School of Biomedical Sciences Theses and Dissertations

Acyl-CoA cholesterol acyl transferase related enzyme-2 required for viability 1 (ARV1) was first recognized in Saccharomyces cerevisiae in a study done in 2000 by Tinkelenberg et al. In yeast, the deletion of ARV1 results in numerous defects including abnormal sterol trafficking [1], the reduction of sphingolipid metabolism [2], synthesis of glycosylphosphatidylinositol (GPI) anchor [3], ER stress [4], and hypersensitivity of fatty acids leading to lipoapoptosis [5]. Arv1 germline deletion in mice displayed a lean phenotype with increased energy [6]. In humans, ARV1 mutations lead to epileptic encephalopathy [7].

Non-alcoholic fatty liver disease (NAFLD) consists of simple steatosis to non-alcoholic steatohepatitis …


The Effect Of Cxcl12 Ligand On Internalization And Dimerization Of Cxcr4 Receptors In Live Cells, Loga Iyer Jan 2021

The Effect Of Cxcl12 Ligand On Internalization And Dimerization Of Cxcr4 Receptors In Live Cells, Loga Iyer

Williams Honors College, Honors Research Projects

The primary objective of this project was to determine the effect of CXCL12 ligand binding on the CXCR4 receptor, specifically, how it would impact receptor internalization and dimerization. The CXCL12 ligand derives from the stromal cell-derived alpha family [8]. The CXCR4 receptors, known as C-X-C chemokine receptor type 4 play an essential role in controlling cell proliferation. When misregulated, these receptors can drive tumorigenesis and are thus important targets of cancer therapy. These G protein-coupled receptors stimulate a cascade of signaling pathways in specific tissues [1]. These pathways include the positive transcriptional control of CXCR4 via the Nuclear Respiratory Factor-1 …


Exploring The Connection Between The Spontaneous Regression Seen In Neuroblastomas, Hypertumors, And Reactive Oxygen Species, Shahad Musa, Manitha Mulpuru Jan 2021

Exploring The Connection Between The Spontaneous Regression Seen In Neuroblastomas, Hypertumors, And Reactive Oxygen Species, Shahad Musa, Manitha Mulpuru

Auctus: The Journal of Undergraduate Research and Creative Scholarship

Peto’s Paradox is defined as the lack of correlation between larger animals and cancer risk. Under the assumption that all cells have equal risk of becoming cancerous, larger animals should have greater rates of cancer. However, the inverse is true. Determining the cause of this variation may allow a supplemental approach to cancer treatment. A combination of two reasons may account for this correlation including hypertumors and metabolism. Hypertumors, or cheater cells, are hypothesized to suppress cancer growth through spontaneous autophagic degradation and overexpression of the RAS g-protein. Both of these characteristics are exhibited in Neuroblastomas. An anticancer drug used …


Mechanisms By Which Mnte-2-Pyp Suppresses Prostate Cancer Cell Growth, Yuxiang Zhu Dec 2020

Mechanisms By Which Mnte-2-Pyp Suppresses Prostate Cancer Cell Growth, Yuxiang Zhu

Theses & Dissertations

Prostate cancer patients are often treated with radiotherapy. MnTE-2-PyP, is a superoxide dismutase (SOD) mimic and a known radioprotector of normal tissues. Our recent work demonstrates that MnTE-2-PyP also inhibits prostate cancer progression with radiotherapy; however, the mechanisms remain unclear. In this thesis, we identified that MnTE-2-PyP-induced intracellular H2O2 levels are critical in inhibiting growth of prostate cancer cells. We found that MnTE-2-PyP induced protein oxidations in PC3 cells and one major group of oxidized protein targets were involved in energy metabolism. The oxidative phosphorylation rates were significantly enhanced in both PC3 and LNCaP cells with MnTE-2-PyP treatment, but mitochondrial …


Single-Fluorophore Sensors For Mechanical Force In Living Cells, Sarah Kricheff Dec 2020

Single-Fluorophore Sensors For Mechanical Force In Living Cells, Sarah Kricheff

Honors Scholar Theses

Mechanotransduction is the process by which a mechanical stimulus is converted to a cellular signal. This process is heavily influential of cell morphology, differentiation, and behavior. However, altered levels of mechanical stimuli are also found in many pathological contexts. For example, cancerous cells have stiffer surrounding tissue than healthy cells, and research suggests that this alters cell behavior and promotes metastasis. Despite these findings, the cellular processes behind these signaling alterations remain widely unknown. Understanding these cascades is critical, as involved proteins can give us a deeper understanding of the role of mechanotransduction, and certain proteins can potentially be targeted …


P53 Drives A Transcriptional Program That Elicits A Non-Cell-Autonomous Response And Alters Cell State In Vivo, Sydney Moyer Dec 2020

P53 Drives A Transcriptional Program That Elicits A Non-Cell-Autonomous Response And Alters Cell State In Vivo, Sydney Moyer

Dissertations & Theses (Open Access)

Cell stress and DNA damage activate the tumor suppressor p53, triggering transcriptional activation of a myriad of target genes. The molecular, morphological, and physiological consequences of this activation remain poorly understood in vivo. We activated a p53 transcriptional program in mice by deletion of Mdm2, a gene which encodes the major p53 inhibitor. By overlaying tissue-specific RNA-sequencing data from pancreas, small intestine, ovary, kidney, and heart with existing p53 ChIP-sequencing, we identified a large repertoire of tissue-specific p53 genes and a common p53 transcriptional signature of seven genes which included Mdm2 but not p21. Global p53 activation …


Investigating Chitosan Modified With Triethylammonium Butanamide And Triethylphosphonium Butanamide As Non-Viral Gene Delivery Vectors By Examining Cytotoxicity And Transfection Efficiency, Deborah C. Ehie Aug 2020

Investigating Chitosan Modified With Triethylammonium Butanamide And Triethylphosphonium Butanamide As Non-Viral Gene Delivery Vectors By Examining Cytotoxicity And Transfection Efficiency, Deborah C. Ehie

MSU Graduate Theses

Gene therapy is a very challenging field, especially with new emerging genetic disorders. Chitosan (CS), due to chitosan’s flexibility, biocompatibility, and biodegradability, has been of interest in the world of gene therapy especially as researchers are gravitating towards non-viral vectors due to the problems caused by viral vectors. Nevertheless, there are still issues regarding solubility, cellular uptake of cargos being transported in vitro or in vivo, increased cytotoxicity levels, as well as many other things that prevent chitosan from being an efficient gene delivery agent. Here I present five derivatives of chitosan, which were all modified with either triethylphosphonium …


Profiling The Circulating Mrna Transcriptome In Human Liver Disease, Aejaz Sayeed, Brielle E Dalvano, David E Kaplan, Usha Viswanathan, John Kulp, Alhaji H Janneh, Lu-Yu Hwang, Adam Ertel, Cataldo Doria, Timothy Block Jun 2020

Profiling The Circulating Mrna Transcriptome In Human Liver Disease, Aejaz Sayeed, Brielle E Dalvano, David E Kaplan, Usha Viswanathan, John Kulp, Alhaji H Janneh, Lu-Yu Hwang, Adam Ertel, Cataldo Doria, Timothy Block

Department of Cancer Biology Faculty Papers

The human circulation contains cell-free DNA and non-coding microRNA (miRNA). Less is known about the presence of messenger RNA (mRNA). This report profiles the human circulating mRNA transcriptome in people with liver cirrhosis (LC) and hepatocellular carcinoma (HCC) to determine whether mRNA analytes can be used as biomarkers of liver disease. Using RNAseq and RT-qPCR, we investigate circulating mRNA in plasma from HCC and LC patients and demonstrate detection of transcripts representing more than 19,000 different protein coding genes. Remarkably, the circulating mRNA expression levels were similar from person to person over the 21 individuals whose samples were analyzed by …


Cell Proliferation And Viability Inhibition By Resveratrol On Breast Cancer Cell Lines, Kyle Ford Gordon Jr May 2020

Cell Proliferation And Viability Inhibition By Resveratrol On Breast Cancer Cell Lines, Kyle Ford Gordon Jr

Honors Theses

Antioxidants are well-known for their various health benefits. They are able to protect cells from being damaged by free radicals that are produced by vital biochemical processes. It has long been known that antioxidants are important in our everyday health, but their potential as disease preventers and potential therapeutic agents is a relatively new field of study. Resveratrol, a natural polyphenol and well-known antioxidant, is found in plants, fruits, and products derived from them, like red wine. Resveratrol has been shown to have various properties, including antiaging, anti-aggregation of platelets, anti-inflammatory, and anticancer activities. Because of their many health benefits, …


Effects Of Penfluridol On Integrin-Fak Signaling And Tumor Cell Killing In Combination With Oncolytic Hsv In Glioblastoma, Mitra Nair May 2020

Effects Of Penfluridol On Integrin-Fak Signaling And Tumor Cell Killing In Combination With Oncolytic Hsv In Glioblastoma, Mitra Nair

Dissertations & Theses (Open Access)

Integrins are known to play an important role in activating multiple intracellular pathways, one of which is focal adhesion kinase (FAK). Phosphorylation of FAK can lead to the activation of various downstream signaling pathways that can increase tumor cell growth and proliferation, making it an ideal target for cancer therapeutics. Due to the fact that many FAK inhibitors are limited in their penetration of the blood brain barrier, we investigated the use of Penfluridol, an antipsychotic drug known to attenuate integrin expression at a transcriptional level, in combination with oncolytic herpes simplex I virus (oHSV) in a glioblastoma model. We …


Tip60 Regulation Of Δnp63Α Is Associated With Cisplatin Resistance, Akshay Hira, Andrew Stacy, Jin Zhang, Michael P. Craig, Madhavi Kadakia Apr 2020

Tip60 Regulation Of Δnp63Α Is Associated With Cisplatin Resistance, Akshay Hira, Andrew Stacy, Jin Zhang, Michael P. Craig, Madhavi Kadakia

Symposium of Student Research, Scholarship, and Creative Activities Materials

About 5.4 million basal and squamous cell skin cancers are diagnosed every year in the US. ΔNp63a, a member of the p53 transcription factor family, is overexpressed in non-melanoma skin cancer and regulates cell survival, migration and invasion. TIP60 is histone acetyltransferase (HAT) which mediates cellular processes such as transcription and the DNA damage response (DDR). Previous studies in our lab have shown that overexpression of TIP60 induces ΔNp63a protein stabilization in a catalytic-dependent manner. Since ΔNp63a is known to transcriptionally regulate several DDR genes and promote cisplatin resistance, its stabilization by TIP60 may contribute to the failure of platinum-based …


Metabolic Reprogramming By C-Met Inhibition As A Targetable Vulnerability In Glioblastoma, Trang Thi Thu Nguyen, Enyuan Shang, Georg Karpel-Massler, Markus D. Siegelin Mar 2020

Metabolic Reprogramming By C-Met Inhibition As A Targetable Vulnerability In Glioblastoma, Trang Thi Thu Nguyen, Enyuan Shang, Georg Karpel-Massler, Markus D. Siegelin

Publications and Research

The elucidation of better treatments for solid tumors and especially malignant glial tumors is a priority. Better understanding of the molecular underpinnings of treatment response and resistance are critical determinants in the success for this endeavor. Recently, a battery of novel tools have surfaced that allow to interrogate tumor cell metabolism to more precise extent than this was possible in the earlier days. At the forefront of these developments are the extracellular flux and carbon tracing analyses. Through utilization of these techniques our group made the recent observation that acute and chronic c-MET inhibition drives fatty acid oxidation that in …


Optimisation Of Estrogen Receptor Subtype-Selectivity Of A 4-Aryl-4h-Chromene Scaffold Previously Identified By Virtual Screening, Miriam Carr, Andrew Knox, Daniel Nevin, Niamh O'Boyle, Shu Wang, Billy Egan, Thomas Mccabe, Brendan Twamley, Daniela Zisterer, David Lloyd, Mary Meegan Jan 2020

Optimisation Of Estrogen Receptor Subtype-Selectivity Of A 4-Aryl-4h-Chromene Scaffold Previously Identified By Virtual Screening, Miriam Carr, Andrew Knox, Daniel Nevin, Niamh O'Boyle, Shu Wang, Billy Egan, Thomas Mccabe, Brendan Twamley, Daniela Zisterer, David Lloyd, Mary Meegan

Articles

4-Aryl-4H-Chromene derivatives have been previously shown to exhibit anti-proliferative, apoptotic and anti-angiogenic activity in a variety of tumor models in vitro and in vivo generally via activation of caspases through inhibition of tubulin polymerisation. We have previously identified by Virtual Screening (VS) a 4-aryl-4H-chromene scaffold, of which two examples were shown to bind Estrogen Receptor α and β with low nanomolar affinity and <20-fold selectivity for α over β and low micromolar anti-proliferative activity in the MCF-7 cell line. Thus, using the 4-aryl-4H-chromene scaffold as a starting point, a series of compounds with a range of basic arylethers at C-4 and modifications at the C3-ester substituent of the benzopyran ring were synthesised, producing some potent ER antagonists in the MCF-7 cell line which were highly selective for ERα (compound 35; 350-fold selectivity) or ERβ (compound 42; 170-fold selectivity).


The Effects Of Rolipram, A Selective Phosphodiesterase Inhibitor, On Immortalized Schwann Cell Proliferation, Kyle Kenney, Amanda Bohn, Angela Asirvatham Jan 2020

The Effects Of Rolipram, A Selective Phosphodiesterase Inhibitor, On Immortalized Schwann Cell Proliferation, Kyle Kenney, Amanda Bohn, Angela Asirvatham

Student Research Poster Presentations 2020

The regulation of Schwann cell growth in vitro is facilitated by heregulin, a neuron-secreted growth factor, and an unknown mitogen that activates the cyclic adenosine monophosphate (cAMP) pathway. The quantity of cAMP available to Schwann cells can determine if they become a myelinating or proliferating phenotype. The abundance of intracellular cAMP available to the cell is widely regulated by a family of enzymes called phosphodiesterases (PDEs). PDE inhibitors such as rolipram have therapeutic potential in various disorders and function by increasing the levels of cAMP in the cell. This study was undertaken to determine the concentration of rolipram that would …