Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 43

Full-Text Articles in Molecular Biology

Characterization And Structure Of A Zn2+ And [2fe-2s]-Containing Copper Chaperone From Archaeoglobus Fulgidus, Matthew Sazinsky, Benjamin Lemoine, Maria Orofino, Roman Davydov, Krisztina Bencze, Timothy Stemmler, Brian Hoffman, José Argüello, Amy Rosenzweig Dec 2015

Characterization And Structure Of A Zn2+ And [2fe-2s]-Containing Copper Chaperone From Archaeoglobus Fulgidus, Matthew Sazinsky, Benjamin Lemoine, Maria Orofino, Roman Davydov, Krisztina Bencze, Timothy Stemmler, Brian Hoffman, José Argüello, Amy Rosenzweig

José M. Argüello

Bacterial CopZ proteins deliver copper to P1B-type Cu+-ATPases that are homologous to the human Wilson and Menkes disease proteins. The genome of the hyperthermophile Archaeoglobus fulgidus encodes a putative CopZ copper chaperone that contains an unusual cysteine rich N-terminal domain of 130 amino acids in addition to a C-terminal copper-binding domain with a conserved CXXC motif. The N-terminal domain (CopZ-NT) is homologous to proteins found only in extremophiles and is the only such protein that is fused to a copper chaperone. Surprisingly, optical, electron paramagnetic resonance, and X-ray absorption spectroscopic data indicate the presence of a [2Fe-2S] cluster in CopZ-NT. …


Biodistribution And Function Of Extracellular Mirna-155 In Mice, Shashi Bala, Timea Csak, Fatemeh Momen-Heravi, Dora Lippai, Karen Kodys, Donna Catalano, Abhishek Satishchandran, Victor R. Ambros, Gyongyi Szabo Oct 2015

Biodistribution And Function Of Extracellular Mirna-155 In Mice, Shashi Bala, Timea Csak, Fatemeh Momen-Heravi, Dora Lippai, Karen Kodys, Donna Catalano, Abhishek Satishchandran, Victor R. Ambros, Gyongyi Szabo

Gyongyi Szabo

Circulating miRNAs can be found in extracellular vesicles (EV) and could be involved in intercellular communication. Here, we report the biodistribution of EV associated miR-155 using miR-155 KO mouse model. Administration of exosomes loaded with synthetic miR-155 mimic into miR-155 KO mice resulted in a rapid accumulation and clearance of miR-155 in the plasma with subsequent distribution in the liver, adipose tissue, lung, muscle and kidney (highest to lowest, respectively). miR-155 expression was detected in isolated hepatocytes and liver mononuclear cells of recipient KO mice suggesting its cellular uptake. In vitro, exosome-mediated restoration of miR-155 in Kupffer cells from miR-155 …


Biodistribution And Function Of Extracellular Mirna-155 In Mice, Shashi Bala, Timea Csak, Fatemeh Momen-Heravi, Dora Lippai, Karen Kodys, Donna Catalano, Abhishek Satishchandran, Victor R. Ambros, Gyongyi Szabo Oct 2015

Biodistribution And Function Of Extracellular Mirna-155 In Mice, Shashi Bala, Timea Csak, Fatemeh Momen-Heravi, Dora Lippai, Karen Kodys, Donna Catalano, Abhishek Satishchandran, Victor R. Ambros, Gyongyi Szabo

Victor R. Ambros

Circulating miRNAs can be found in extracellular vesicles (EV) and could be involved in intercellular communication. Here, we report the biodistribution of EV associated miR-155 using miR-155 KO mouse model. Administration of exosomes loaded with synthetic miR-155 mimic into miR-155 KO mice resulted in a rapid accumulation and clearance of miR-155 in the plasma with subsequent distribution in the liver, adipose tissue, lung, muscle and kidney (highest to lowest, respectively). miR-155 expression was detected in isolated hepatocytes and liver mononuclear cells of recipient KO mice suggesting its cellular uptake. In vitro, exosome-mediated restoration of miR-155 in Kupffer cells from miR-155 …


Control Of Stem Cell Self-Renewal And Differentiation By The Heterochronic Genes And The Cellular Asymmetry Machinery In Caenorhabditis Elegans, Omid F. Harandi, Victor Ambros Oct 2015

Control Of Stem Cell Self-Renewal And Differentiation By The Heterochronic Genes And The Cellular Asymmetry Machinery In Caenorhabditis Elegans, Omid F. Harandi, Victor Ambros

Victor R. Ambros

Transitions between asymmetric (self-renewing) and symmetric (proliferative) cell divisions are robustly regulated in the context of normal development and tissue homeostasis. To genetically assess the regulation of these transitions, we used the postembryonic epithelial stem (seam) cell lineages of Caenorhabditis elegans. In these lineages, the timing of these transitions is regulated by the evolutionarily conserved heterochronic pathway, whereas cell division asymmetry is conferred by a pathway consisting of Wnt (Wingless) pathway components, including posterior pharynx defect (POP-1)/TCF, APC related/adenomatosis polyposis coli (APR-1)/APC, and LIT-1/NLK (loss of intestine/Nemo-like kinase). Here we explore the genetic regulatory mechanisms underlying stage-specific transitions between self-renewing …


The Decapping Scavenger Enzyme Dcs-1 Controls Microrna Levels In Caenorhabditis Elegans, Gabriel Bosse, Stefan Ruegger, Maria Ow, Alejandro Vasquez-Rifo, Evelyne Rondeau, Victor Ambros, Helge Grosshans, Martin Simard Oct 2015

The Decapping Scavenger Enzyme Dcs-1 Controls Microrna Levels In Caenorhabditis Elegans, Gabriel Bosse, Stefan Ruegger, Maria Ow, Alejandro Vasquez-Rifo, Evelyne Rondeau, Victor Ambros, Helge Grosshans, Martin Simard

Victor R. Ambros

In metazoans, microRNAs play a critical role in the posttranscriptional regulation of genes required for cell proliferation and differentiation. MicroRNAs themselves are regulated by a multitude of mechanisms influencing their transcription and posttranscriptional maturation. However, there is only sparse knowledge on pathways regulating the mature, functional form of microRNA. Here, we uncover the implication of the decapping scavenger protein DCS-1 in the control of microRNA turnover. In Caenorhabditis elegans, mutations in dcs-1 increase the levels of functional microRNAs. We demonstrate that DCS-1 interacts with the exonuclease XRN-1 to promote microRNA degradation in an independent manner from its known decapping scavenger …


Developmental Decline In Neuronal Regeneration By The Progressive Change Of Two Intrinsic Timers, Yan Zou, Hui Chiu, Anna Zinovyeva, Victor Ambros, Chiou-Fen Chuang, Chieh Chang Oct 2015

Developmental Decline In Neuronal Regeneration By The Progressive Change Of Two Intrinsic Timers, Yan Zou, Hui Chiu, Anna Zinovyeva, Victor Ambros, Chiou-Fen Chuang, Chieh Chang

Victor R. Ambros

Like mammalian neurons, Caenorhabditis elegans neurons lose axon regeneration ability as they age, but it is not known why. Here, we report that let-7 contributes to a developmental decline in anterior ventral microtubule (AVM) axon regeneration. In older AVM axons, let-7 inhibits regeneration by down-regulating LIN-41, an important AVM axon regeneration-promoting factor. Whereas let-7 inhibits lin-41 expression in older neurons through the lin-41 3' untranslated region, lin-41 inhibits let-7 expression in younger neurons through Argonaute ALG-1. This reciprocal inhibition ensures that axon regeneration is inhibited only in older neurons. These findings show that a let-7-lin-41 regulatory circuit, which was previously …


The Evolution Of Our Thinking About Micrornas, Victor Ambros Oct 2015

The Evolution Of Our Thinking About Micrornas, Victor Ambros

Victor R. Ambros

Our appreciation of the significance of microRNAs to biology at large continues to be an evolving process.


Victor Ambros: The Broad Scope Of Micrornas. Interview By Caitlin Sedwick, Victor R. Ambros Oct 2015

Victor Ambros: The Broad Scope Of Micrornas. Interview By Caitlin Sedwick, Victor R. Ambros

Victor R. Ambros

Interview with Victor Ambros, who studies how microRNAs impact development.


Mutations In Conserved Residues Of The C. Elegans Microrna Argonaute Alg-1 Identify Separable Functions In Alg-1 Mirisc Loading And Target Repression, Anna Y. Zinovyeva, Samir Bouasker, Martin J. Simard, Christopher M. Hammell, Victor R. Ambros Oct 2015

Mutations In Conserved Residues Of The C. Elegans Microrna Argonaute Alg-1 Identify Separable Functions In Alg-1 Mirisc Loading And Target Repression, Anna Y. Zinovyeva, Samir Bouasker, Martin J. Simard, Christopher M. Hammell, Victor R. Ambros

Victor R. Ambros

microRNAs function in diverse developmental and physiological processes by regulating target gene expression at the post-transcriptional level. ALG-1 is one of two Caenorhabditis elegans Argonautes (ALG-1 and ALG-2) that together are essential for microRNA biogenesis and function. Here, we report the identification of novel antimorphic (anti) alleles of ALG-1 as suppressors of lin-28(lf) precocious developmental phenotypes. The alg-1(anti) mutations broadly impair the function of many microRNAs and cause dosage-dependent phenotypes that are more severe than the complete loss of ALG-1. ALG-1(anti) mutant proteins are competent for promoting Dicer cleavage of microRNA precursors and for associating with and stabilizing microRNAs. However, …


The Developmental Timing Regulator Hbl-1 Modulates The Dauer Formation Decision In Caenorhabditis Elegans, Xantha Karp, Victor Ambros Oct 2015

The Developmental Timing Regulator Hbl-1 Modulates The Dauer Formation Decision In Caenorhabditis Elegans, Xantha Karp, Victor Ambros

Victor R. Ambros

Animals developing in the wild encounter a range of environmental conditions, and so developmental mechanisms have evolved that can accommodate different environmental contingencies. Harsh environmental conditions cause Caenorhabditis elegans larvae to arrest as stress-resistant "dauer" larvae after the second larval stage (L2), thereby indefinitely postponing L3 cell fates. HBL-1 is a key transcriptional regulator of L2 vs. L3 cell fate. Through the analysis of genetic interactions between mutations of hbl-1 and of genes encoding regulators of dauer larva formation, we find that hbl-1 can also modulate the dauer formation decision in a complex manner. We propose that dynamic interactions between …


Mir-14 Regulates Autophagy During Developmental Cell Death By Targeting Ip3-Kinase 2, Charles Nelson, Victor Ambros, Eric Baehrecke Oct 2015

Mir-14 Regulates Autophagy During Developmental Cell Death By Targeting Ip3-Kinase 2, Charles Nelson, Victor Ambros, Eric Baehrecke

Victor R. Ambros

Macroautophagy (autophagy) is a lysosome-dependent degradation process that has been implicated in age-associated diseases. Autophagy is involved in both cell survival and cell death, but little is known about the mechanisms that distinguish its use during these distinct cell fates. Here, we identify the microRNA miR-14 as being both necessary and sufficient for autophagy during developmentally regulated cell death in Drosophila. Loss of miR-14 prevented induction of autophagy during salivary gland cell death, but had no effect on starvation-induced autophagy in the fat body. Moreover, misexpression of miR-14 was sufficient to prematurely induce autophagy in salivary glands, but not in …


Circulating Micrornas In Cardiovascular Disease, David Mcmanus, Victor Ambros Oct 2015

Circulating Micrornas In Cardiovascular Disease, David Mcmanus, Victor Ambros

Victor R. Ambros

Comment on: Transcoronary concentration gradients of circulating microRNAs. [Circulation. 2011]


Micrornas And Developmental Timing, Victor Ambros Oct 2015

Micrornas And Developmental Timing, Victor Ambros

Victor R. Ambros

MicroRNAs regulate temporal transitions in gene expression associated with cell fate progression and differentiation throughout animal development. Genetic analysis of developmental timing in the nematode Caenorhabditis elegans identified two evolutionarily conserved microRNAs, lin-4/mir-125 and let-7, that regulate cell fate progression and differentiation in C. elegans cell lineages. MicroRNAs perform analogous developmental timing functions in other animals, including mammals. By regulating cell fate choices and transitions between pluripotency and differentiation, microRNAs help to orchestrate developmental events throughout the developing animal, and to play tissue homeostasis roles important for disease, including cancer.


Dauer Larva Quiescence Alters The Circuitry Of Microrna Pathways Regulating Cell Fate Progression In C. Elegans, Xantha Karp, Victor Ambros Oct 2015

Dauer Larva Quiescence Alters The Circuitry Of Microrna Pathways Regulating Cell Fate Progression In C. Elegans, Xantha Karp, Victor Ambros

Victor R. Ambros

In C. elegans larvae, the execution of stage-specific developmental events is controlled by heterochronic genes, which include those encoding a set of transcription factors and the microRNAs that regulate the timing of their expression. Under adverse environmental conditions, developing larvae enter a stress-resistant, quiescent stage called 'dauer'. Dauer larvae are characterized by the arrest of all progenitor cell lineages at a stage equivalent to the end of the second larval stage (L2). If dauer larvae encounter conditions favorable for resumption of reproductive growth, they recover and complete development normally, indicating that post-dauer larvae possess mechanisms to accommodate an indefinite period …


Mirwip: Microrna Target Prediction Based On Microrna-Containing Ribonucleoprotein-Enriched Transcripts, Molly Hammell, Dang Long, Liang Zhang, Andrew Lee, C. Steven Carmack, Min Han, Ye Ding, Victor Ambros Oct 2015

Mirwip: Microrna Target Prediction Based On Microrna-Containing Ribonucleoprotein-Enriched Transcripts, Molly Hammell, Dang Long, Liang Zhang, Andrew Lee, C. Steven Carmack, Min Han, Ye Ding, Victor Ambros

Victor R. Ambros

Target prediction for animal microRNAs (miRNAs) has been hindered by the small number of verified targets available to evaluate the accuracy of predicted miRNA-target interactions. Recently, a dataset of 3,404 miRNA-associated mRNA transcripts was identified by immunoprecipitation of the RNA-induced silencing complex components AIN-1 and AIN-2. Our analysis of this AIN-IP dataset revealed enrichment for defining characteristics of functional miRNA-target interactions, including structural accessibility of target sequences, total free energy of miRNA-target hybridization and topology of base-pairing to the 5' seed region of the miRNA. We used these enriched characteristics as the basis for a quantitative miRNA target prediction method, …


Circulating Cell And Plasma Microrna Profiles Differ Between Non-St-Segment And St-Segment-Elevation Myocardial Infarction, Jeanine Ward, Nada Esa, Rahul Pidikiti, Jane E. Freedman, John F. Keaney, Kahraman Tanriverdi, Olga Vitseva, Victor R. Ambros, Rosalind Lee, David D. Mcmanus Oct 2015

Circulating Cell And Plasma Microrna Profiles Differ Between Non-St-Segment And St-Segment-Elevation Myocardial Infarction, Jeanine Ward, Nada Esa, Rahul Pidikiti, Jane E. Freedman, John F. Keaney, Kahraman Tanriverdi, Olga Vitseva, Victor R. Ambros, Rosalind Lee, David D. Mcmanus

Victor R. Ambros

BACKGROUND: Differences in plasma and whole blood expression microRNAs (miRNAs) in patients with an acute coronary syndrome (ACS) have been determined in both in vitro and in vivo studies. Although most circulating miRNAs are located in the cellular components of whole blood, little is known about the miRNA profiles of whole blood subcomponents, including plasma, platelets and leukocytes in patients with myocardial ischemia. METHODS: Thirteen patients with a ST-segment-elevation (STEMI) or non-ST-segment elevation (NSTEMI) myocardial infarction were identified in the University of Massachusetts Medical Center Emergency Department (ED) or cardiac catheterization laboratory between February and June of 2012. Whole blood …


The Embryonic Mir-35 Family Of Micrornas Promotes Multiple Aspects Of Fecundity In Caenorhabditis Elegans, Katherine Mcjunkin, Victor R. Ambros Oct 2015

The Embryonic Mir-35 Family Of Micrornas Promotes Multiple Aspects Of Fecundity In Caenorhabditis Elegans, Katherine Mcjunkin, Victor R. Ambros

Victor R. Ambros

MicroRNAs guide many aspects of development in all metazoan species. Frequently, microRNAs are expressed during a specific developmental stage to perform a temporally defined function. The C. elegans mir-35-42 microRNAs are expressed abundantly in oocytes and early embryos and are essential for embryonic development. Here, we show that these embryonic microRNAs surprisingly also function to control the number of progeny produced by adult hermaphrodites. Using a temperature-sensitive mir-35-42 family mutant (a deletion of the mir-35-41 cluster), we demonstrate three distinct defects in hermaphrodite fecundity. At permissive temperatures, a mild sperm defect partially reduces hermaphrodite fecundity. At restrictive temperatures, somatic gonad …


An Efficient And Sensitive Method For Preparing Cdna Libraries From Scarce Biological Samples, Catherine H. Sterling, Isana Veksler-Lublinsky, Victor R. Ambros Oct 2015

An Efficient And Sensitive Method For Preparing Cdna Libraries From Scarce Biological Samples, Catherine H. Sterling, Isana Veksler-Lublinsky, Victor R. Ambros

Victor R. Ambros

The preparation and high-throughput sequencing of cDNA libraries from samples of small RNA is a powerful tool to quantify known small RNAs (such as microRNAs) and to discover novel RNA species. Interest in identifying the small RNA repertoire present in tissues and in biofluids has grown substantially with the findings that small RNAs can serve as indicators of biological conditions and disease states. Here we describe a novel and straightforward method to clone cDNA libraries from small quantities of input RNA. This method permits the generation of cDNA libraries from sub-picogram quantities of RNA robustly, efficiently and reproducibly. We demonstrate …


Immunopurification Of Ago1 Mirnps Selects For A Distinct Class Of Microrna Targets, Xin Hong, Molly Hammell, Victor Ambros, Stephen Cohen Oct 2015

Immunopurification Of Ago1 Mirnps Selects For A Distinct Class Of Microrna Targets, Xin Hong, Molly Hammell, Victor Ambros, Stephen Cohen

Victor R. Ambros

microRNAs comprise a few percent of animal genes and have been recognized as important regulators of a diverse range of biological processes. Understanding the biological functions of miRNAs requires effective means to identify their targets. Combined efforts from computational prediction, miRNA over-expression or depletion, and biochemical purification have identified thousands of potential miRNA-target pairs in cells and organisms. Complementarity to the miRNA seed sequence appears to be a common principle in target recognition. Other features, including miRNA-target duplex stability, binding site accessibility, and local UTR structure might affect target recognition. Yet computational approaches using such contextual features have yielded largely …


Drosophila Let-7 Microrna Is Required For Remodeling Of The Neuromusculature During Metamorphosis, Nicholas S. Sokol, Peizhang Xu, Yuh-Nung Jan, Victor R. Ambros Oct 2015

Drosophila Let-7 Microrna Is Required For Remodeling Of The Neuromusculature During Metamorphosis, Nicholas S. Sokol, Peizhang Xu, Yuh-Nung Jan, Victor R. Ambros

Victor R. Ambros

The Drosophila let-7-Complex (let-7-C) is a polycistronic locus encoding three ancient microRNAs: let-7, miR-100, and fly lin-4 (miR-125). We find that the let-7-C locus is principally expressed in the pupal and adult neuromusculature. let-7-C knockout flies appear normal externally but display defects in adult behaviors (e.g., flight, motility, and fertility) as well as clear juvenile features in their neuromusculature. We find that the function of let-7-C to ensure the appropriate remodeling of the abdominal neuromusculature during the larval-to-adult transition is carried out predominantly by let-7 alone. This heterochronic role of let-7 is likely just one of the ways in which …


Effect Of Life History On Microrna Expression During C. Elegans Development, Xantha Karp, Molly Hammell, Maria C. Ow, Victor R. Ambros Oct 2015

Effect Of Life History On Microrna Expression During C. Elegans Development, Xantha Karp, Molly Hammell, Maria C. Ow, Victor R. Ambros

Victor R. Ambros

Animals have evolved mechanisms to ensure the robustness of developmental outcomes to changing environments. MicroRNA expression may contribute to developmental robustness because microRNAs are key post-transcriptional regulators of developmental gene expression and can affect the expression of multiple target genes. Caenorhabditis elegans provides an excellent model to study developmental responses to environmental conditions. In favorable environments, C. elegans larvae develop rapidly and continuously through four larval stages. In contrast, in unfavorable conditions, larval development may be interrupted at either of two diapause stages: The L1 diapause occurs when embryos hatch in the absence of food, and the dauer diapause occurs …


Micrornas: Genetically Sensitized Worms Reveal New Secrets, Victor Ambros Oct 2015

Micrornas: Genetically Sensitized Worms Reveal New Secrets, Victor Ambros

Victor R. Ambros

Why do many microRNA gene mutants display no evident phenotype? Multiply mutant worms that are selectively impaired in genetic regulatory network activities have been used to uncover previously unknown functions for numerous Caenorhabditis elegans microRNAs.


Prb/Cki Pathways At The Interface Of Cell Cycle And Development, Victor Ambros Oct 2015

Prb/Cki Pathways At The Interface Of Cell Cycle And Development, Victor Ambros

Victor R. Ambros

Comment on: The cyclin-dependent kinase inhibitors, cki-1 and cki-2, act in overlapping but distinct pathways to control cell-cycle quiescence during C. elegans development. Buck SH, et al. Cell Cycle 2009; 8:2613-20.


A Conserved Three-Nucleotide Core Motif Defines Musashi Rna Binding Specificity, Nancy Zearfoss, Laura Deveau, Carina Clingman, Eric Schmidt, Emily Johnson, Francesca Massi, Sean Ryder Sep 2015

A Conserved Three-Nucleotide Core Motif Defines Musashi Rna Binding Specificity, Nancy Zearfoss, Laura Deveau, Carina Clingman, Eric Schmidt, Emily Johnson, Francesca Massi, Sean Ryder

Sean P. Ryder

Musashi (MSI) family proteins control cell proliferation and differentiation in many biological systems. They are overexpressed in tumors of several origins, and their expression level correlates with poor prognosis. MSI proteins control gene expression by binding RNA and regulating its translation. They contain two RNA recognition motif (RRM) domains, which recognize a defined sequence element. The relative contribution of each nucleotide to the binding affinity and specificity is unknown. We analyzed the binding specificity of three MSI family RRM domains using a quantitative fluorescence anisotropy assay. We found that the core element driving recognition is the sequence UAG. Nucleotides outside …


Biosignatures In Chimney Structures And Sediment From The Loki’S Castle Low-Temperature Hydrothermal Vent Field At The Arctic Mid-Ocean Ridge, A. Jaeschke, B. Eickmann, Susan Lang, S. Bernasconi, H. Strauss, G. Früh-Green Jun 2015

Biosignatures In Chimney Structures And Sediment From The Loki’S Castle Low-Temperature Hydrothermal Vent Field At The Arctic Mid-Ocean Ridge, A. Jaeschke, B. Eickmann, Susan Lang, S. Bernasconi, H. Strauss, G. Früh-Green

Susan Q. Lang

No abstract provided.


Modulation Of Hiv Protease Flexibility By The T80n Mutation, Hao Zhou, Shangyang Li, John Badger, Ellen Nalivaika, Yufeng Cai, Jennifer Foulkes-Murzycki, Celia Schiffer, Lee Makowski Jun 2015

Modulation Of Hiv Protease Flexibility By The T80n Mutation, Hao Zhou, Shangyang Li, John Badger, Ellen Nalivaika, Yufeng Cai, Jennifer Foulkes-Murzycki, Celia Schiffer, Lee Makowski

Celia A. Schiffer

The flexibility of HIV protease plays a critical role in enabling enzymatic activity and is required for substrate access to the active site. While the importance of flexibility in the flaps that cover the active site is well known, flexibility in other parts of the enzyme is also critical for function. One key region is a loop containing Thr 80 which forms the walls of the active site. Although not situated within the active site, amino acid Thr80 is absolutely conserved. The mutation T80N preserves the structure of the enzyme but catalytic activity is completely lost. To investigate the potential …


Hnrnp A1 And Secondary Structure Coordinate Alternative Splicing Of Mag, Nancy Zearfoss, Emily Johnson, Sean Ryder May 2015

Hnrnp A1 And Secondary Structure Coordinate Alternative Splicing Of Mag, Nancy Zearfoss, Emily Johnson, Sean Ryder

Sean P. Ryder

Myelin-associated glycoprotein (MAG) is a major component of myelin in the vertebrate central nervous system. MAG is present in the periaxonal region of the myelin structure, where it interacts with neuronal proteins to inhibit axon outgrowth and protect neurons from degeneration. Two alternatively spliced isoforms of Mag mRNA have been identified. The mRNA encoding the shorter isoform, known as S-MAG, contains a termination codon in exon 12, while the mRNA encoding the longer isoform, known as L-MAG, skips exon 12 and produces a protein with a longer C-terminal region. L-MAG is required in the central nervous system. How inclusion of …


Evolution Of The Influenza A Virus Genome During Development Of Oseltamivir Resistance In Vitro, Nicholas Renzette, Daniel Caffrey, Konstantin Zeldovich, Ping Liu, Glen Gallagher, Daniel Aiello, Alyssa Porter, Evelyn Kurt-Jones, Daniel Bolon, Yu-Ping Poh, Jeffrey Jensen, Celia Schiffer, Timothy Kowalik, Robert Finberg, Jennifer Wang Mar 2015

Evolution Of The Influenza A Virus Genome During Development Of Oseltamivir Resistance In Vitro, Nicholas Renzette, Daniel Caffrey, Konstantin Zeldovich, Ping Liu, Glen Gallagher, Daniel Aiello, Alyssa Porter, Evelyn Kurt-Jones, Daniel Bolon, Yu-Ping Poh, Jeffrey Jensen, Celia Schiffer, Timothy Kowalik, Robert Finberg, Jennifer Wang

Glen R. Gallagher

Influenza A virus (IAV) is a major cause of morbidity and mortality throughout the world. Current antiviral therapies include oseltamivir, a neuraminidase inhibitor that prevents the release of nascent viral particles from infected cells. However, the IAV genome can evolve rapidly, and oseltamivir resistance mutations have been detected in numerous clinical samples. Using an in vitro evolution platform and whole-genome population sequencing, we investigated the population genomics of IAV during the development of oseltamivir resistance. Strain A/Brisbane/59/2007 (H1N1) was grown in Madin-Darby canine kidney cells with or without escalating concentrations of oseltamivir over serial passages. Following drug treatment, the H274Y …


Structural Basis And Distal Effects Of Gag Substrate Coevolution In Drug Resistance To Hiv-1 Protease, Aysegul Ozen, Kuan-Hung Lin, Nese Yilmaz, Celia Schiffer Jan 2015

Structural Basis And Distal Effects Of Gag Substrate Coevolution In Drug Resistance To Hiv-1 Protease, Aysegul Ozen, Kuan-Hung Lin, Nese Yilmaz, Celia Schiffer

Celia A. Schiffer

Drug resistance mutations in response to HIV-1 protease inhibitors are selected not only in the drug target but elsewhere in the viral genome, especially at the protease cleavage sites in the precursor protein Gag. To understand the molecular basis of this protease-substrate coevolution, we solved the crystal structures of drug resistant I50V/A71V HIV-1 protease with p1-p6 substrates bearing coevolved mutations. Analyses of the protease-substrate interactions reveal that compensatory coevolved mutations in the substrate do not restore interactions lost due to protease mutations, but instead establish other interactions that are not restricted to the site of mutation. Mutation of a substrate …


Evolution Of The Influenza A Virus Genome During Development Of Oseltamivir Resistance In Vitro, Nicholas Renzette, Daniel R. Caffrey, Konstantin B. Zeldovich, Ping Liu, Glen R. Gallagher, Daniel Aiello, Alyssa J. Porter, Evelyn A. Kurt-Jones, Daniel N. Bolon, Yu-Ping Poh, Jeffrey D. Jensen, Celia A. Schiffer, Timothy F. Kowalik, Robert W. Finberg, Jennifer P. Wang Jan 2015

Evolution Of The Influenza A Virus Genome During Development Of Oseltamivir Resistance In Vitro, Nicholas Renzette, Daniel R. Caffrey, Konstantin B. Zeldovich, Ping Liu, Glen R. Gallagher, Daniel Aiello, Alyssa J. Porter, Evelyn A. Kurt-Jones, Daniel N. Bolon, Yu-Ping Poh, Jeffrey D. Jensen, Celia A. Schiffer, Timothy F. Kowalik, Robert W. Finberg, Jennifer P. Wang

Celia A. Schiffer

Influenza A virus (IAV) is a major cause of morbidity and mortality throughout the world. Current antiviral therapies include oseltamivir, a neuraminidase inhibitor that prevents the release of nascent viral particles from infected cells. However, the IAV genome can evolve rapidly, and oseltamivir resistance mutations have been detected in numerous clinical samples. Using an in vitro evolution platform and whole-genome population sequencing, we investigated the population genomics of IAV during the development of oseltamivir resistance. Strain A/Brisbane/59/2007 (H1N1) was grown in Madin-Darby canine kidney cells with or without escalating concentrations of oseltamivir over serial passages. Following drug treatment, the H274Y …