Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry

2015

Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 121

Full-Text Articles in Molecular Biology

Molecular Dynamics Simulation Reveals Correlated Inter-Lobe Motion In Protein Lysine Methyltransferase Smyd2, Nicholas Spellmon, Xiaonan Sun, Nualpun Sirinupong, Brian Fp Edwards, Chunying Li, Zhe Yang Dec 2015

Molecular Dynamics Simulation Reveals Correlated Inter-Lobe Motion In Protein Lysine Methyltransferase Smyd2, Nicholas Spellmon, Xiaonan Sun, Nualpun Sirinupong, Brian Fp Edwards, Chunying Li, Zhe Yang

Biochemistry and Molecular Biology Faculty Publications

SMYD proteins are an exciting field of study as they are linked to many types of cancer- related pathways. Cardiac and skeletal muscle development and function also depend on SMYD proteins opening a possible avenue for cardiac-related treatment. Previous crystal structure studies have revealed that this special class of protein lysine methyltransferases have a bilobal structure, and an open–closed motion may regulate substrate specificity. Here we use the molecular dynamics simulation to investigate the still-poorly-understood SMYD2 dynamics. Cross-correlation analysis reveals that SMYD2 exhibits a negative cor- related inter-lobe motion. Principle component analysis suggests that this correlated dynamic is contributed to …


Alternative Use Of Dna Binding Domains By The Neurospora White Collar Complex Dictates Circadian Regulation And Light Responses, Bin Wang, Xiaoying Zhou, Jennifer J. Loros, Jay C. Dunlap Dec 2015

Alternative Use Of Dna Binding Domains By The Neurospora White Collar Complex Dictates Circadian Regulation And Light Responses, Bin Wang, Xiaoying Zhou, Jennifer J. Loros, Jay C. Dunlap

Dartmouth Scholarship

In the Neurospora circadian system, the White Collar complex (WCC) of WC-1 and WC-2 drives transcription of the circadian pacemaker gene frequency (frq), whose gene product, FRQ, as a part of the FRQ-FRH complex (FFC), inhibits its own expression. The WCC is also the principal Neurospora photoreceptor; WCC-mediated light induction of frq resets the clock, and all acute light induction is triggered by WCC binding to promoters of light-induced genes. However, not all acutely light-induced genes are also clock regulated, and conversely, not all clock-regulated direct targets of WCC are light induced; the structural determinants governing the shift …


Regulation Of The Transmembrane Mucin Muc4 By Wnt/Β-Catenin In Gastrointestinal Cancers, Priya Pai Dec 2015

Regulation Of The Transmembrane Mucin Muc4 By Wnt/Β-Catenin In Gastrointestinal Cancers, Priya Pai

Theses & Dissertations

The transmembrane mucin MUC4 is a high molecular weight glycoprotein that is expressed de novo in pancreatic ductal adenocarcinoma (PDAC). MUC4 has been shown to play a tumor-promoting role in malignancies such as PDAC, ovarian cancer and breast cancer. Unlike the normal pancreas, MUC4 is ordinarily expressed by goblet and absorptive cells in the normal colonic epithelium. However, its expression/role in colorectal cancer (CRC) is not well studied.

In this dissertation, the goal was to identify factor(s) that may differentially regulate MUC4 in these two disparate malignancies. Furthermore, in light of its pro-tumorigenic role in other malignancies, we analyzed the …


The Role Of Thymine Dna Glycosylase (Tdg) And Dna Demethylation In Tgf Beta Signaling, Matthew E.R. Maitland Dec 2015

The Role Of Thymine Dna Glycosylase (Tdg) And Dna Demethylation In Tgf Beta Signaling, Matthew E.R. Maitland

Electronic Thesis and Dissertation Repository

Prompted by findings that TGFβ stimulates thymine DNA glycosylase (TDG) dependent rapid DNA demethylation and activation of the CDKN2B gene, I investigated the global role of TDG and DNA demethylation in TGFβ signaling in HaCaT cells. Using dot blot analysis, I show that TGFβ treatment increases the global levels of 5-formylcytosine, an intermediate metabolite of active DNA demethylation. Characterization of genomic regions that undergo DNA demethylation and recruitment of TDG indicate that they are both frequent events, but only overlap at 11 genomic locations. I identified 440 TGFβ upregulated genes, 40 of which were bound by TDG and 169 that …


Characterization And Structure Of A Zn2+ And [2fe-2s]-Containing Copper Chaperone From Archaeoglobus Fulgidus, Matthew Sazinsky, Benjamin Lemoine, Maria Orofino, Roman Davydov, Krisztina Bencze, Timothy Stemmler, Brian Hoffman, José Argüello, Amy Rosenzweig Dec 2015

Characterization And Structure Of A Zn2+ And [2fe-2s]-Containing Copper Chaperone From Archaeoglobus Fulgidus, Matthew Sazinsky, Benjamin Lemoine, Maria Orofino, Roman Davydov, Krisztina Bencze, Timothy Stemmler, Brian Hoffman, José Argüello, Amy Rosenzweig

José M. Argüello

Bacterial CopZ proteins deliver copper to P1B-type Cu+-ATPases that are homologous to the human Wilson and Menkes disease proteins. The genome of the hyperthermophile Archaeoglobus fulgidus encodes a putative CopZ copper chaperone that contains an unusual cysteine rich N-terminal domain of 130 amino acids in addition to a C-terminal copper-binding domain with a conserved CXXC motif. The N-terminal domain (CopZ-NT) is homologous to proteins found only in extremophiles and is the only such protein that is fused to a copper chaperone. Surprisingly, optical, electron paramagnetic resonance, and X-ray absorption spectroscopic data indicate the presence of a [2Fe-2S] cluster in CopZ-NT. …


Optimizing A Luciferase-Based Tool For Studying The Effects Of Fatty Acid Desaturase 7 On Singlet Oxygen Accumulation In Arabidopsis Thaliana, Abeer Muhammedali Alnasrawi Dec 2015

Optimizing A Luciferase-Based Tool For Studying The Effects Of Fatty Acid Desaturase 7 On Singlet Oxygen Accumulation In Arabidopsis Thaliana, Abeer Muhammedali Alnasrawi

Graduate Theses and Dissertations

In plants, reactive oxygen species (ROS) are generated as a byproduct of normal metabolism, as well as in response to adverse conditions such as light stress, extreme temperatures, and exposure to pests and pathogens. Singlet oxygen (1O2) is a ROS that is formed during photosynthesis in photosystem II (PSII) of the chloroplasts. Levels of 1O2 and other ROS are tightly controlled in healthy plants, but some studies suggest that levels of fatty acid desaturase (FAD) activity in Arabidopsis thaliana can influence constitutive and/or stress-responsive ROS accumulation. In this study, a luciferase-based reporter gene that is selectively stimulated by 1O2 (AAA-ATPase: …


Co-Treatment With Conjugated Linoleic Acid And Nitrite Modulates Mitochondrial Respiration And Electron Transport Chain Activity In Vivo And Attenuates Mitochondrial Dysfunction During Cardiac Injury., Patrick Van Hoose Dec 2015

Co-Treatment With Conjugated Linoleic Acid And Nitrite Modulates Mitochondrial Respiration And Electron Transport Chain Activity In Vivo And Attenuates Mitochondrial Dysfunction During Cardiac Injury., Patrick Van Hoose

Electronic Theses and Dissertations

Cardiovascular disease and subsequent complications, such as myocardial infarction (MI), is the leading cause of death within the United States. Clinical intervention to reduce cardiac damage following myocardial ischemia is limited. Polyunsaturated fatty acids have been linked to an overall beneficial effect on cardiovascular health and function. Conjugated linoleic acid (cLA) is an 18:2 unsaturated fatty acid found within the diet in ruminant meat and dairy products. The cis-9 trans-11 isomer of cLA is the most prominent isomer within the diet and cLA has been linked to favorable outcomes in numerous disease states. The mechanism mediating the effects of cLA …


Rnai Validation Of Resistance Genes And Their Interactions In The Highly Ddt-Resistant 91-R Strain Of Drosophila Melanogaster, Kyle Gellatly Nov 2015

Rnai Validation Of Resistance Genes And Their Interactions In The Highly Ddt-Resistant 91-R Strain Of Drosophila Melanogaster, Kyle Gellatly

Masters Theses

4,4’-dichlorodiphenyltrichloroethane (DDT) has been re-recommended by the World Health Organization for malaria mosquito control. Previous DDT use has resulted in resistance, and with continued use resistance will increase in terms of level and extent. Drosophila melanogaster is a model dipteran that has many available genetic tools, numerous studies done on insecticide resistance mechanisms, and is related to malaria mosquitoes allowing for extrapolation. The 91-R strain of D. melanogaster is highly resistant to DDT (>1500-fold), however, there is no mechanistic scheme that accounts for this level of resistance. Recently, reduced penetration, increased detoxification, and direct excretion have been identified as …


Targeting Autopalmitoylation To Modulate Protein S-Palmitoylation, Laura Dawn Hamel Nov 2015

Targeting Autopalmitoylation To Modulate Protein S-Palmitoylation, Laura Dawn Hamel

USF Tampa Graduate Theses and Dissertations

Palmitoylation refers to the covalent attachment of fatty acids, such as palmitate, onto the cysteine residues of proteins. This process may subsequently alter their localization and function. Nearly all of the enzymes that catalyze palmitoylation, zDHHC protein acyl transferases (PATs), are implicated in neurological disorders, infectious diseases, and cancer in humans. Of particular interest to those who study palmitoylation are Ras family GTPas and zDHHC9-GCP16, the zDHHC PAT that palmitoylates Ras proteins. Erf2-Erf4 is the zDHHC PAT that palmitoylates Ras proteins in Saccharomyces cerevisiae. Currently, there are no methods to therapeutically target palmitoylation for the treatment of disease. One …


Novel Enzyme Perspectives: Arylalkylamine N-Acyltransferases From Bombyx Mori & 1-Deoxy- D-Xylulose-5-Phosphate Synthase From Plasmodium Falciparum And Plasmodium Vivax, Matthew R. Battistini Nov 2015

Novel Enzyme Perspectives: Arylalkylamine N-Acyltransferases From Bombyx Mori & 1-Deoxy- D-Xylulose-5-Phosphate Synthase From Plasmodium Falciparum And Plasmodium Vivax, Matthew R. Battistini

USF Tampa Graduate Theses and Dissertations

This dissertation is dedicated to the research and investigation of novel enzymes and the methods used to study them, with physiological roles ranging from isoprenoid biosynthesis to neurotransmitter production. Using a combination of bioinformatics, recombinant cloning, enzymology, and proteomics, we have contributed to the understanding and exploration of several human illnesses, including malaria, cancer, and endocrine dysfunction.

Our first project involved studying the enzymes responsible for N-acylarylalkylamide biosynthesis in Bombyx mori. Very little is known how these potent signaling molecules are produced in vivo, however, one possible pathway is the direct conjugation of an acyl-CoA to a corresponding …


New Insights Into The Role Of The Udp-Glucose: Glycoprotein Glucosyltransferase 1 In The Endoplasmic Reticulum Quality Control, Abla Tannous Nov 2015

New Insights Into The Role Of The Udp-Glucose: Glycoprotein Glucosyltransferase 1 In The Endoplasmic Reticulum Quality Control, Abla Tannous

Doctoral Dissertations

The UDP-glucose:glycoprotein glucosyltransferase 1 (UGT1) is a central quality control factor in the Endoplasmic Reticulum (ER). It surveys the folding status of proteins in the ER and redirects them, via its reglucosylation activity, to bind to the ER carbohydrate binding (lectin) chaperones calreticulin (CRT) and calnexin (CNX). However, the cellular mechanism of UGT1 is not completely understood. Using a cell based reglucosylation assay, we found that UGT1 reglucosylated proteins that eventually fold. This modification was transient and resulted in delay of protein trafficking in the secretory pathway and prolonged binding to lectin chaperones in the ER. In addition, terminally misfolded …


The Generation, Exploitation And Future Of Induced Pluripotent Stem Cells, Jacob Steenwyk Oct 2015

The Generation, Exploitation And Future Of Induced Pluripotent Stem Cells, Jacob Steenwyk

Scholarly Undergraduate Research Journal at Clark (SURJ)

The foundational advancements of John Gurdon and Shinya Yamanaka have improved understanding of dedifferen- tiation of cells to a pluripotent state. The seminal discovery established a novel system to study disease pathogenesis, drug screening, and toxicity, as well as sprouted the new field of regenerative medicine. In this article, the method- ology to obtain dedifferentiated cells, known as induced pluripotent stem (iPS) cells, subsequent validation, and application of which are reviewed. The experiments investigated here aim to demonstrate the capacity of iPS cells to replace the ethically-gray human embryonic cells by developing human livers and viable, healthy animals. It is …


Structure Based Drug Design Targeting Bacterial Antibiotic Resistance And Alzheimer's Disease, Eric Michael Lewandowski Oct 2015

Structure Based Drug Design Targeting Bacterial Antibiotic Resistance And Alzheimer's Disease, Eric Michael Lewandowski

USF Tampa Graduate Theses and Dissertations

Structure based drug design is a rapidly advancing discipline that examines how protein targets structurally interact with small molecules, or known inhibitors, and then uses this information to lead inhibitor optimization efforts. In the case of novel inhibitors, protein structural information is first obtained via X-ray crystallography, NMR studies, or a combination of both approaches. Then, computational molecular docking is often used to screen, in silico, millions of small molecules and calculate the potential interactions they may have with the target protein’s binding pocket, in hopes of identifying novel low affinity inhibitors. By examining the interactions these small, low affinity, …


Anti-Tb And Antibacterial Activities Of Natural Products Extracts, Douglas Armstrong, Nathan Krause, Drew Frey Oct 2015

Anti-Tb And Antibacterial Activities Of Natural Products Extracts, Douglas Armstrong, Nathan Krause, Drew Frey

Faculty Scholarship – Chemistry

Samples of numerous plant species were received from the southwestern part of the USA from Richard Spjut, and plant samples were collected here in Illinois. All were extracted with typical solvents, giving crude residues, some of which were subjected to counter-current or flash chromatographic methods. Some of the crude extracts and chromatographic fractions had anti-tuberculosis and/or antibacterial activity.

In a general way, bioactive natural products are dealt with very well by Liang & Fang, 2006. More specifically, the southwestern part of the United States has a large variety of indigenous plants, many of which have not been investigated for their …


Biodistribution And Function Of Extracellular Mirna-155 In Mice, Shashi Bala, Timea Csak, Fatemeh Momen-Heravi, Dora Lippai, Karen Kodys, Donna Catalano, Abhishek Satishchandran, Victor R. Ambros, Gyongyi Szabo Oct 2015

Biodistribution And Function Of Extracellular Mirna-155 In Mice, Shashi Bala, Timea Csak, Fatemeh Momen-Heravi, Dora Lippai, Karen Kodys, Donna Catalano, Abhishek Satishchandran, Victor R. Ambros, Gyongyi Szabo

Gyongyi Szabo

Circulating miRNAs can be found in extracellular vesicles (EV) and could be involved in intercellular communication. Here, we report the biodistribution of EV associated miR-155 using miR-155 KO mouse model. Administration of exosomes loaded with synthetic miR-155 mimic into miR-155 KO mice resulted in a rapid accumulation and clearance of miR-155 in the plasma with subsequent distribution in the liver, adipose tissue, lung, muscle and kidney (highest to lowest, respectively). miR-155 expression was detected in isolated hepatocytes and liver mononuclear cells of recipient KO mice suggesting its cellular uptake. In vitro, exosome-mediated restoration of miR-155 in Kupffer cells from miR-155 …


Biodistribution And Function Of Extracellular Mirna-155 In Mice, Shashi Bala, Timea Csak, Fatemeh Momen-Heravi, Dora Lippai, Karen Kodys, Donna Catalano, Abhishek Satishchandran, Victor R. Ambros, Gyongyi Szabo Oct 2015

Biodistribution And Function Of Extracellular Mirna-155 In Mice, Shashi Bala, Timea Csak, Fatemeh Momen-Heravi, Dora Lippai, Karen Kodys, Donna Catalano, Abhishek Satishchandran, Victor R. Ambros, Gyongyi Szabo

Victor R. Ambros

Circulating miRNAs can be found in extracellular vesicles (EV) and could be involved in intercellular communication. Here, we report the biodistribution of EV associated miR-155 using miR-155 KO mouse model. Administration of exosomes loaded with synthetic miR-155 mimic into miR-155 KO mice resulted in a rapid accumulation and clearance of miR-155 in the plasma with subsequent distribution in the liver, adipose tissue, lung, muscle and kidney (highest to lowest, respectively). miR-155 expression was detected in isolated hepatocytes and liver mononuclear cells of recipient KO mice suggesting its cellular uptake. In vitro, exosome-mediated restoration of miR-155 in Kupffer cells from miR-155 …


Control Of Stem Cell Self-Renewal And Differentiation By The Heterochronic Genes And The Cellular Asymmetry Machinery In Caenorhabditis Elegans, Omid F. Harandi, Victor Ambros Oct 2015

Control Of Stem Cell Self-Renewal And Differentiation By The Heterochronic Genes And The Cellular Asymmetry Machinery In Caenorhabditis Elegans, Omid F. Harandi, Victor Ambros

Victor R. Ambros

Transitions between asymmetric (self-renewing) and symmetric (proliferative) cell divisions are robustly regulated in the context of normal development and tissue homeostasis. To genetically assess the regulation of these transitions, we used the postembryonic epithelial stem (seam) cell lineages of Caenorhabditis elegans. In these lineages, the timing of these transitions is regulated by the evolutionarily conserved heterochronic pathway, whereas cell division asymmetry is conferred by a pathway consisting of Wnt (Wingless) pathway components, including posterior pharynx defect (POP-1)/TCF, APC related/adenomatosis polyposis coli (APR-1)/APC, and LIT-1/NLK (loss of intestine/Nemo-like kinase). Here we explore the genetic regulatory mechanisms underlying stage-specific transitions between self-renewing …


The Decapping Scavenger Enzyme Dcs-1 Controls Microrna Levels In Caenorhabditis Elegans, Gabriel Bosse, Stefan Ruegger, Maria Ow, Alejandro Vasquez-Rifo, Evelyne Rondeau, Victor Ambros, Helge Grosshans, Martin Simard Oct 2015

The Decapping Scavenger Enzyme Dcs-1 Controls Microrna Levels In Caenorhabditis Elegans, Gabriel Bosse, Stefan Ruegger, Maria Ow, Alejandro Vasquez-Rifo, Evelyne Rondeau, Victor Ambros, Helge Grosshans, Martin Simard

Victor R. Ambros

In metazoans, microRNAs play a critical role in the posttranscriptional regulation of genes required for cell proliferation and differentiation. MicroRNAs themselves are regulated by a multitude of mechanisms influencing their transcription and posttranscriptional maturation. However, there is only sparse knowledge on pathways regulating the mature, functional form of microRNA. Here, we uncover the implication of the decapping scavenger protein DCS-1 in the control of microRNA turnover. In Caenorhabditis elegans, mutations in dcs-1 increase the levels of functional microRNAs. We demonstrate that DCS-1 interacts with the exonuclease XRN-1 to promote microRNA degradation in an independent manner from its known decapping scavenger …


Developmental Decline In Neuronal Regeneration By The Progressive Change Of Two Intrinsic Timers, Yan Zou, Hui Chiu, Anna Zinovyeva, Victor Ambros, Chiou-Fen Chuang, Chieh Chang Oct 2015

Developmental Decline In Neuronal Regeneration By The Progressive Change Of Two Intrinsic Timers, Yan Zou, Hui Chiu, Anna Zinovyeva, Victor Ambros, Chiou-Fen Chuang, Chieh Chang

Victor R. Ambros

Like mammalian neurons, Caenorhabditis elegans neurons lose axon regeneration ability as they age, but it is not known why. Here, we report that let-7 contributes to a developmental decline in anterior ventral microtubule (AVM) axon regeneration. In older AVM axons, let-7 inhibits regeneration by down-regulating LIN-41, an important AVM axon regeneration-promoting factor. Whereas let-7 inhibits lin-41 expression in older neurons through the lin-41 3' untranslated region, lin-41 inhibits let-7 expression in younger neurons through Argonaute ALG-1. This reciprocal inhibition ensures that axon regeneration is inhibited only in older neurons. These findings show that a let-7-lin-41 regulatory circuit, which was previously …


The Evolution Of Our Thinking About Micrornas, Victor Ambros Oct 2015

The Evolution Of Our Thinking About Micrornas, Victor Ambros

Victor R. Ambros

Our appreciation of the significance of microRNAs to biology at large continues to be an evolving process.


Victor Ambros: The Broad Scope Of Micrornas. Interview By Caitlin Sedwick, Victor R. Ambros Oct 2015

Victor Ambros: The Broad Scope Of Micrornas. Interview By Caitlin Sedwick, Victor R. Ambros

Victor R. Ambros

Interview with Victor Ambros, who studies how microRNAs impact development.


Mutations In Conserved Residues Of The C. Elegans Microrna Argonaute Alg-1 Identify Separable Functions In Alg-1 Mirisc Loading And Target Repression, Anna Y. Zinovyeva, Samir Bouasker, Martin J. Simard, Christopher M. Hammell, Victor R. Ambros Oct 2015

Mutations In Conserved Residues Of The C. Elegans Microrna Argonaute Alg-1 Identify Separable Functions In Alg-1 Mirisc Loading And Target Repression, Anna Y. Zinovyeva, Samir Bouasker, Martin J. Simard, Christopher M. Hammell, Victor R. Ambros

Victor R. Ambros

microRNAs function in diverse developmental and physiological processes by regulating target gene expression at the post-transcriptional level. ALG-1 is one of two Caenorhabditis elegans Argonautes (ALG-1 and ALG-2) that together are essential for microRNA biogenesis and function. Here, we report the identification of novel antimorphic (anti) alleles of ALG-1 as suppressors of lin-28(lf) precocious developmental phenotypes. The alg-1(anti) mutations broadly impair the function of many microRNAs and cause dosage-dependent phenotypes that are more severe than the complete loss of ALG-1. ALG-1(anti) mutant proteins are competent for promoting Dicer cleavage of microRNA precursors and for associating with and stabilizing microRNAs. However, …


The Developmental Timing Regulator Hbl-1 Modulates The Dauer Formation Decision In Caenorhabditis Elegans, Xantha Karp, Victor Ambros Oct 2015

The Developmental Timing Regulator Hbl-1 Modulates The Dauer Formation Decision In Caenorhabditis Elegans, Xantha Karp, Victor Ambros

Victor R. Ambros

Animals developing in the wild encounter a range of environmental conditions, and so developmental mechanisms have evolved that can accommodate different environmental contingencies. Harsh environmental conditions cause Caenorhabditis elegans larvae to arrest as stress-resistant "dauer" larvae after the second larval stage (L2), thereby indefinitely postponing L3 cell fates. HBL-1 is a key transcriptional regulator of L2 vs. L3 cell fate. Through the analysis of genetic interactions between mutations of hbl-1 and of genes encoding regulators of dauer larva formation, we find that hbl-1 can also modulate the dauer formation decision in a complex manner. We propose that dynamic interactions between …


Mir-14 Regulates Autophagy During Developmental Cell Death By Targeting Ip3-Kinase 2, Charles Nelson, Victor Ambros, Eric Baehrecke Oct 2015

Mir-14 Regulates Autophagy During Developmental Cell Death By Targeting Ip3-Kinase 2, Charles Nelson, Victor Ambros, Eric Baehrecke

Victor R. Ambros

Macroautophagy (autophagy) is a lysosome-dependent degradation process that has been implicated in age-associated diseases. Autophagy is involved in both cell survival and cell death, but little is known about the mechanisms that distinguish its use during these distinct cell fates. Here, we identify the microRNA miR-14 as being both necessary and sufficient for autophagy during developmentally regulated cell death in Drosophila. Loss of miR-14 prevented induction of autophagy during salivary gland cell death, but had no effect on starvation-induced autophagy in the fat body. Moreover, misexpression of miR-14 was sufficient to prematurely induce autophagy in salivary glands, but not in …


Circulating Micrornas In Cardiovascular Disease, David Mcmanus, Victor Ambros Oct 2015

Circulating Micrornas In Cardiovascular Disease, David Mcmanus, Victor Ambros

Victor R. Ambros

Comment on: Transcoronary concentration gradients of circulating microRNAs. [Circulation. 2011]


Micrornas And Developmental Timing, Victor Ambros Oct 2015

Micrornas And Developmental Timing, Victor Ambros

Victor R. Ambros

MicroRNAs regulate temporal transitions in gene expression associated with cell fate progression and differentiation throughout animal development. Genetic analysis of developmental timing in the nematode Caenorhabditis elegans identified two evolutionarily conserved microRNAs, lin-4/mir-125 and let-7, that regulate cell fate progression and differentiation in C. elegans cell lineages. MicroRNAs perform analogous developmental timing functions in other animals, including mammals. By regulating cell fate choices and transitions between pluripotency and differentiation, microRNAs help to orchestrate developmental events throughout the developing animal, and to play tissue homeostasis roles important for disease, including cancer.


Dauer Larva Quiescence Alters The Circuitry Of Microrna Pathways Regulating Cell Fate Progression In C. Elegans, Xantha Karp, Victor Ambros Oct 2015

Dauer Larva Quiescence Alters The Circuitry Of Microrna Pathways Regulating Cell Fate Progression In C. Elegans, Xantha Karp, Victor Ambros

Victor R. Ambros

In C. elegans larvae, the execution of stage-specific developmental events is controlled by heterochronic genes, which include those encoding a set of transcription factors and the microRNAs that regulate the timing of their expression. Under adverse environmental conditions, developing larvae enter a stress-resistant, quiescent stage called 'dauer'. Dauer larvae are characterized by the arrest of all progenitor cell lineages at a stage equivalent to the end of the second larval stage (L2). If dauer larvae encounter conditions favorable for resumption of reproductive growth, they recover and complete development normally, indicating that post-dauer larvae possess mechanisms to accommodate an indefinite period …


Mirwip: Microrna Target Prediction Based On Microrna-Containing Ribonucleoprotein-Enriched Transcripts, Molly Hammell, Dang Long, Liang Zhang, Andrew Lee, C. Steven Carmack, Min Han, Ye Ding, Victor Ambros Oct 2015

Mirwip: Microrna Target Prediction Based On Microrna-Containing Ribonucleoprotein-Enriched Transcripts, Molly Hammell, Dang Long, Liang Zhang, Andrew Lee, C. Steven Carmack, Min Han, Ye Ding, Victor Ambros

Victor R. Ambros

Target prediction for animal microRNAs (miRNAs) has been hindered by the small number of verified targets available to evaluate the accuracy of predicted miRNA-target interactions. Recently, a dataset of 3,404 miRNA-associated mRNA transcripts was identified by immunoprecipitation of the RNA-induced silencing complex components AIN-1 and AIN-2. Our analysis of this AIN-IP dataset revealed enrichment for defining characteristics of functional miRNA-target interactions, including structural accessibility of target sequences, total free energy of miRNA-target hybridization and topology of base-pairing to the 5' seed region of the miRNA. We used these enriched characteristics as the basis for a quantitative miRNA target prediction method, …


Circulating Cell And Plasma Microrna Profiles Differ Between Non-St-Segment And St-Segment-Elevation Myocardial Infarction, Jeanine Ward, Nada Esa, Rahul Pidikiti, Jane E. Freedman, John F. Keaney, Kahraman Tanriverdi, Olga Vitseva, Victor R. Ambros, Rosalind Lee, David D. Mcmanus Oct 2015

Circulating Cell And Plasma Microrna Profiles Differ Between Non-St-Segment And St-Segment-Elevation Myocardial Infarction, Jeanine Ward, Nada Esa, Rahul Pidikiti, Jane E. Freedman, John F. Keaney, Kahraman Tanriverdi, Olga Vitseva, Victor R. Ambros, Rosalind Lee, David D. Mcmanus

Victor R. Ambros

BACKGROUND: Differences in plasma and whole blood expression microRNAs (miRNAs) in patients with an acute coronary syndrome (ACS) have been determined in both in vitro and in vivo studies. Although most circulating miRNAs are located in the cellular components of whole blood, little is known about the miRNA profiles of whole blood subcomponents, including plasma, platelets and leukocytes in patients with myocardial ischemia. METHODS: Thirteen patients with a ST-segment-elevation (STEMI) or non-ST-segment elevation (NSTEMI) myocardial infarction were identified in the University of Massachusetts Medical Center Emergency Department (ED) or cardiac catheterization laboratory between February and June of 2012. Whole blood …


The Embryonic Mir-35 Family Of Micrornas Promotes Multiple Aspects Of Fecundity In Caenorhabditis Elegans, Katherine Mcjunkin, Victor R. Ambros Oct 2015

The Embryonic Mir-35 Family Of Micrornas Promotes Multiple Aspects Of Fecundity In Caenorhabditis Elegans, Katherine Mcjunkin, Victor R. Ambros

Victor R. Ambros

MicroRNAs guide many aspects of development in all metazoan species. Frequently, microRNAs are expressed during a specific developmental stage to perform a temporally defined function. The C. elegans mir-35-42 microRNAs are expressed abundantly in oocytes and early embryos and are essential for embryonic development. Here, we show that these embryonic microRNAs surprisingly also function to control the number of progeny produced by adult hermaphrodites. Using a temperature-sensitive mir-35-42 family mutant (a deletion of the mir-35-41 cluster), we demonstrate three distinct defects in hermaphrodite fecundity. At permissive temperatures, a mild sperm defect partially reduces hermaphrodite fecundity. At restrictive temperatures, somatic gonad …