Open Access. Powered by Scholars. Published by Universities.®

Nuclear Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Nuclear Engineering

Two-Equation Two-Fluid Model For Bubbly Flow In A Vertical Channel, Jeffrey Feliszak, Martin Bertodano Oct 2013

Two-Equation Two-Fluid Model For Bubbly Flow In A Vertical Channel, Jeffrey Feliszak, Martin Bertodano

The Summer Undergraduate Research Fellowship (SURF) Symposium

The one-dimensional two-fluid model is widely acknowledged as the most detailed and accurate macroscopic formulation of the thermo-fluid dynamics in nuclear reactor safety analysis. Several thermo-fluid dynamics codes have sprung up based on the one dimensional two-fluid model, such as RELAP5, TRAC, RETRAN, CATHARE, etc. However, these codes are quasi-steady because they lack the short wavelength models that are necessary to make the models well-posed; therefore they must rely on excessive numerical viscosity. Not utilizing short wavelength models causes small wavelength waves to grow quickly to infinity. The project objective is to develop a drafting force model for a one …


Evolution Of Laser Produced Aluminum Plasma In The Presence Of A Transverse Magnetic Field, Nicholaus Mckenna, Niral Shah, Faisal Odeh, Prasoon Diwakar, Fillipo Genco, Sivanandan Harilal, Syed Hassan, Ahmed Hassanein Oct 2013

Evolution Of Laser Produced Aluminum Plasma In The Presence Of A Transverse Magnetic Field, Nicholaus Mckenna, Niral Shah, Faisal Odeh, Prasoon Diwakar, Fillipo Genco, Sivanandan Harilal, Syed Hassan, Ahmed Hassanein

The Summer Undergraduate Research Fellowship (SURF) Symposium

Surface erosion of plasma-facing components is a very important problem in fusion reactors. In order to make fusion reactors economically viable the lifetime of plasma-facing components must be extended. My research entails using magnetic field interactions with plasma in order to determine how the plasma moves through the field, and if it can be stopped by using a certain orientation of magnetic field. A magnetic field should be able to alter the path of evolving plasma due to the interaction of the magnetic field with the charged particles in the plasma. The optimal orientation for slowing the evolution of the …


Ion Beam Sputtering Yield Measurements By Quartz Crystal Microbalance, Norris W. Watkins Ii, Kaitlyn Grundy, Ahmed Hassanein, Theodore J. Novakowski, Al-Montaser Ba Al-Ajlony, Mark Catalfano, Sivanandan Harilal Oct 2013

Ion Beam Sputtering Yield Measurements By Quartz Crystal Microbalance, Norris W. Watkins Ii, Kaitlyn Grundy, Ahmed Hassanein, Theodore J. Novakowski, Al-Montaser Ba Al-Ajlony, Mark Catalfano, Sivanandan Harilal

The Summer Undergraduate Research Fellowship (SURF) Symposium

Quartz-crystal microbalance (QCM) has been used as a sensitive device for the measurement of small mass changes for a long ago. In fact, using QCM we can measure the differential sputtering yield profile of a material, over a hemisphere above the target, very precisely. The sputtering yield depends on properties of both the incident ions (energy, mass, and incidence angle) and the target (mass, surface binding energy, surface topography, and even the crystal orientation). In our present study, we used a highly sensitive QCM to detect the mass change of the electrode material (gold and silver) through oscillations and calculated …


Collimation Effects On Magnetically Confined Laser Produced Plasmas, Niral Shah, Nick Mckenna, Faisal Odeh, Prasoon Diwakar, Fillipo Genco, Sivanandan Harilal, Syed Hassan, Ahmed Hassanein Oct 2013

Collimation Effects On Magnetically Confined Laser Produced Plasmas, Niral Shah, Nick Mckenna, Faisal Odeh, Prasoon Diwakar, Fillipo Genco, Sivanandan Harilal, Syed Hassan, Ahmed Hassanein

The Summer Undergraduate Research Fellowship (SURF) Symposium

Tokamaks for fusion research are extremely complex and are still limited by inherent instabilities such as material erosion from plasma instabilities. Due to the lack of data and high demand of resources, simulations to portray Tokamaks are essential. A Particle-In-Cell (PIC) simulation for plasma erosion on materials within the Tokamak is to be benchmarked using the experimental data obtained in these experiments. The effects of an axial magnetic field (magnetic field lines are along the plasma propagation direction) on an expanding laser produced plasma plume are investigated. A Continuum Surelite Nd:YAG laser system at 1064 nm wavelength and 6 ns …


The Role Of Surface Roughness On Ion Sputtering Yield Measurements, Katie Grundy, Norris W. Watkins Ii, Al-Montaser Ba Al-Ajlony, Theodore J. Novakowski, Mark Catalfano, Jitendra K. Tripathi, Sivanandan Harilal, Ahmed Hassanein Oct 2013

The Role Of Surface Roughness On Ion Sputtering Yield Measurements, Katie Grundy, Norris W. Watkins Ii, Al-Montaser Ba Al-Ajlony, Theodore J. Novakowski, Mark Catalfano, Jitendra K. Tripathi, Sivanandan Harilal, Ahmed Hassanein

The Summer Undergraduate Research Fellowship (SURF) Symposium

Ion sputtering is the removal of surface atoms or molecules in a solid under energetic ion irradiation. This technique is promising for its applications in material modification and characterization. Sputtering yield, the average number of atoms removed from a sample per incident ion, is a crucial parameter in material modification. In the present study, a quartz crystal microbalance was used within an ultra-high vacuum chamber (10E-8 torr) to measure the sputtering yield of gold. An NTI-1401 ion gun was used to bombard argon and helium ions onto a gold sample. The argon and helium ions used ranged in energy from …