Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Nanotechnology

PDF

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 31 - 60 of 117

Full-Text Articles in Nanoscience and Nanotechnology

Optical Sub-Diffraction Limited Focusing For Confined Heating And Lithography, Luis M. Traverso Dec 2016

Optical Sub-Diffraction Limited Focusing For Confined Heating And Lithography, Luis M. Traverso

Open Access Dissertations

Electronics and nanotechnology is constantly demanding a decrease in size of fabricated nanoscale features. This decrease in size has become much more difficult recently due to the limited resolution of optical systems that are fundamental to many nanofabrication methods. A lot of effort has been made to fabricate devices smaller than the diffraction limit of light. Creating devices that are capable of confining fields by means of interference patterns of propagating wave modes and surface plasmon, has proven successful to confine light into smaller spot sizes.

Zone plate diffraction lenses generate spots with dimensions very close to the diffraction limit. …


Exploring Public Values Implications Of The I-Corps Program, Jan Youtie, Philip Shapira Oct 2016

Exploring Public Values Implications Of The I-Corps Program, Jan Youtie, Philip Shapira

Philip Shapira

This paper examines how the concept of public values can be operationalized in an ongoing public initiative to stimulate innovation in an emerging technology. Our study focuses on Innovation Corps (I-Corps)—a program initiated in 2011 by the National Science Foundation (NSF) to accelerate the process of commercializing science-driven discoveries. The I-Corps method has since spread rapidly across multiple US agencies. Separately, there has also been heightened attention to the early anticipation and mitigation of the implications of emerging science and technology. Drawing on the case of nanotechnology, the paper considers how public values related to nanotechnology commercialization can be integrated …


Potential Applications For Halloysite Nanotubes Based Drug Delivery Systems, Lin Sun Oct 2016

Potential Applications For Halloysite Nanotubes Based Drug Delivery Systems, Lin Sun

Doctoral Dissertations

Drug delivery refers to approaches, formulations, technologies, and systems for transporting a drug in the body. The purpose is to enhance the drug efficacy and to reduce side reactions, which can significantly improve treatment outcomes. Halloysite is a naturally occurred alumino-silicate clay with a tubular structure. It is a biocompatible material with a big surface area which can be used for attachment of targeted molecules. Besides, loaded molecules can present a sustained release manner in solution. These properties make halloysite nanotubes (HNTs) a good option for drug delivery.

In this study, a drug delivery system was built based on halloysite …


Performance Of Tf-Vls Grown Inp Photovoltaic Cells, Junyan Shi, Yubo Sun, Peter Bermel Aug 2016

Performance Of Tf-Vls Grown Inp Photovoltaic Cells, Junyan Shi, Yubo Sun, Peter Bermel

The Summer Undergraduate Research Fellowship (SURF) Symposium

A grand challenge of photovoltaics (PV) is to find materials offering a promising combination of low costs and high efficiencies. While III-V material-based PV cells have set many world records, often their cost is much greater than other commercial cells. To help address this gap, thin-film vapor-liquid-solid (TF-VLS) grown Indium Phosphide (InP) PV cells have recently been developed, which both eliminate a key source of high costs and offer a direct bandgap of 1.34eV with potential to approach maximum theoretical efficiencies. However, the unanticipated phenomenon of open circuit voltage (Voc) degradation has prevented TF-VLS grown InP PV cells …


Study Of Plasmonic Properties Of The Gold Nanorods In The Visible To Near Infrared Light Regime, Pijush Kanti Ghosh Aug 2016

Study Of Plasmonic Properties Of The Gold Nanorods In The Visible To Near Infrared Light Regime, Pijush Kanti Ghosh

Graduate Theses and Dissertations

Nanostructures of noble metals show unique plasmonic behavior in the visible to near-infrared light range. Gold nanostructures exhibit a particularly strong plasmonic response for these wavelengths of light. In this study we have investigated optical enhancement and absorption of gold nanorods with different thickness using finite element method simulations. This study reports on the resonance wavelength of the sharp-corner and round-corner rectangles of constant length 100 nm and width 60 nm. The result shows that resonance wavelength depends on the polarization of the incident light; there also exists a strong dependence of the optical enhancement and absorption on the thickness …


Investigation Of Carbon Nanomaterials Embedded In A Cementitious Matrix, Clarissa A. Roe Jul 2016

Investigation Of Carbon Nanomaterials Embedded In A Cementitious Matrix, Clarissa A. Roe

Masters Theses & Specialist Projects

The objective of this thesis was to investigate whether the addition of carbon nanofibers had an effect on the splitting tensile strength of Hydro-Stone gypsum concrete. The carbon nanofibers used were single-walled carbon nanotubes (SWNT), buckminsterfullerene (C60), and graphene oxide (GO). Evidence of the nanofibers interacting with gypsum crystals in a connective manner was identified in both 1 mm thick concrete discs and concrete columns possessing a height of 2 in and a diameter of 1 in. Before imaging, the columns were subjected to a splitting tensile strength test. The results illustrate that while there is a general decrease in …


Calcium Phosphate As A Key Material For Socially Responsible Tissue Engineering, Vuk Uskoković, Victoria M. Wu Jun 2016

Calcium Phosphate As A Key Material For Socially Responsible Tissue Engineering, Vuk Uskoković, Victoria M. Wu

Pharmacy Faculty Articles and Research

Socially responsible technologies are designed while taking into consideration the socioeconomic, geopolitical and environmental limitations of regions in which they will be implemented. In the medical context, this involves making therapeutic platforms more accessible and affordable to patients in poor regions of the world wherein a given disease is endemic. This often necessitates going against the reigning trend of making therapeutic nanoparticles ever more structurally complex and expensive. However, studies aimed at simplifying materials and formulations while maintaining the functionality and therapeutic response of their more complex counterparts seldom provoke a significant interest in the scientific community. In this review …


Al/Ti Nanostructured Multilayers: From Mechanical, Tribological, To Corrosion Properties, Sina Izadi Apr 2016

Al/Ti Nanostructured Multilayers: From Mechanical, Tribological, To Corrosion Properties, Sina Izadi

USF Tampa Graduate Theses and Dissertations

Nanostructured metallic multilayers (NMMs) are well-known for their high strength in smaller bilayer thicknesses. Six Al/Ti (NMM) with different individual layer thickness were tested for their mechanical hardness using a nanoindentation tool. Individual layer thicknesses were chosen carefully to cover the whole confined layer slip (CLS) model. Nano-hardness had a reverse relation with the square root of individual layer thickness and reached a steady state at ~ 5 nm bilayer thickness. Decreasing the layer bilayer thickness from ~ 104 nm to ~ 5 nm, improved the mechanical hardness up to ~ 101%. Residual stresses were measured using grazing incident X-ray …


Clay Nanotube Composites For Antibacterial Nanostructured Coatings, Christen J. Boyer Apr 2016

Clay Nanotube Composites For Antibacterial Nanostructured Coatings, Christen J. Boyer

Doctoral Dissertations

A surging demand for the development of new antimicrobial nanomaterials exists due to the frequency of medical device-associated infections and the transfer of pathogens from highly touched objects. Naturally occurring halloysite clay nanotubes (HNTs) have shown to be ideal particles for polymer reinforcement, time-release drug delivery, nano-reactor synthesis, and as substrate material for nanostructured coatings.

This research demonstrates the feasibility of a novel method for coating HNTs with metals for antibacterial applications. The first ever ability to coat HNTs through electrolysis was developed for customizable and multi-functional antibacterial nanoparticle platforms. HNTs were investigated as substrate for the deposition of copper …


Refractive Index Engineering And Optical Properties Enhancement By Polymer Nanocomposites, Cheng Li Mar 2016

Refractive Index Engineering And Optical Properties Enhancement By Polymer Nanocomposites, Cheng Li

Doctoral Dissertations

The major part of this dissertation discusses the engineering of the refractive index of materials using solution-processable polymer nanocomposites and their applications in building optical components and devices. Three particular polymer nanocomposites have been introduced to achieve materials with tunable refractive indices and enhanced optical properties, which can be used to manipulate the behavior of light or electromagnetic radiations. In the first system, polyhedral oligomeric silsesquioxane (POSS)/polymer nanocomposites are developed. Thin films with tunable, low refractive indicies were fabricated from the composites. The mechanical strength of these films was characterized, and their application in antireflective coatings is discussed. In the …


Implementation Of New System For Oxygen Generation And Carbon Dioxide Removal, Angelo Peter Karavolos Jan 2016

Implementation Of New System For Oxygen Generation And Carbon Dioxide Removal, Angelo Peter Karavolos

Open Access Theses & Dissertations

This research effort develops an integrated system for CO2 removal and O2 production. A unique material, dodeca-tungsto-phosphoric acid (H3PO4W12O3; henceforth referred to as DTPA) is mixed with tetra-ethyl-ortho-silicate Si(OC2H5)4 or TEOS. This mixture exhibits unique properties of heat absorption and high electrical conductivity. In the system described herein, the DTPA resides within a cross linked arrangement of TEOS. The DTPA furnishes a source of O2, while the TEOS furnishes structural support for the large DTPA crystals. In addition, the large amount of H2O within the crystal also adsorbs CO2. It can also be cross-linked with other polymers such as polycarbonate, …


Development Of A Physical And Electronic Model For Ruo2 Nanorod Rectenna Devices, Justin Dao Jan 2016

Development Of A Physical And Electronic Model For Ruo2 Nanorod Rectenna Devices, Justin Dao

Graduate College Dissertations and Theses

Ruthenium oxide (RuO2) nanorods are an emergent technology in nanostructure devices. As the physical size of electronics approaches a critical lower limit, alternative solutions to further device miniaturization are currently under investigation. Thin-film nanorod growth is an interesting technology, being investigated for use in wireless communications, sensor systems, and alternative energy applications.

In this investigation, self-assembled RuO2 nanorods are grown on a variety of substrates via a high density plasma, reactive sputtering process. Nanorods have been found to grow on substrates that form native oxide layers when exposed to air, namely silicon, aluminum, and titanium. Samples were analyzed with Scanning …


Physically Equivalent Intelligent Systems For Reasoning Under Uncertainty At Nanoscale, Santosh Khasanvis Nov 2015

Physically Equivalent Intelligent Systems For Reasoning Under Uncertainty At Nanoscale, Santosh Khasanvis

Doctoral Dissertations

Machines today lack the inherent ability to reason and make decisions, or operate in the presence of uncertainty. Machine-learning methods such as Bayesian Networks (BNs) are widely acknowledged for their ability to uncover relationships and generate causal models for complex interactions. However, their massive computational requirement, when implemented on conventional computers, hinders their usefulness in many critical problem areas e.g., genetic basis of diseases, macro finance, text classification, environment monitoring, etc. We propose a new non-von Neumann technology framework purposefully architected across all layers for solving these problems efficiently through physical equivalence, enabled by emerging nanotechnology. The architecture builds …


3d Printing Nanostructured Thermoelectric Device, Qianru Jia, Collier Miers, Amy Marconnet Aug 2015

3d Printing Nanostructured Thermoelectric Device, Qianru Jia, Collier Miers, Amy Marconnet

The Summer Undergraduate Research Fellowship (SURF) Symposium

Thermoelectric materials convert thermal energy to electrical energy and vice versa. Thermoelectrics have attracted much attention and research efforts due to the possibility solving electronic cooling problems and reducing energy consumption through waste heat recovery. The efficiency of a thermoelectric material is determined by the dimensionless figure of merit ZT, which depends on both thermal and electrical properties. Researchers have worked for several decades to improve the ZT, but there had been little progress until nanomaterials and nanofabrication became widely available. Nanotechnology makes the ZT enhancement attainable by disconnecting the linkage between thermal and electrical transport. Printing customized, flexible thermoelectric …


Thermophotovoltaic System Simulation With Realistic Experimental Considerations, Evan L. Schlenker, Zhiguang Zhou, Peter Bermel Aug 2015

Thermophotovoltaic System Simulation With Realistic Experimental Considerations, Evan L. Schlenker, Zhiguang Zhou, Peter Bermel

The Summer Undergraduate Research Fellowship (SURF) Symposium

Thermophotovoltaic (TPV) systems are a promising type of energy generation method that convert heat into electricity via thermal radiation. TPV has potential to benefit the economy, the energy sector, and the environment by converting waste heat from other power generation methods into electricity. Simulations of these systems can play a key role in designing TPV systems and validating their experimental performance. Current simulation tools can model important aspects of TPV systems fairly accurately, but generally make certain simplifying assumptions that are challenging to reproduce in experiments. Developing a simulation tool that accurately captures thermal emission and reflection in complex, realistic …


Electronic And Mechanical Material Properties From Dft Calculations, Usama Kamran, David Guzman, Alejandro Strachan Aug 2015

Electronic And Mechanical Material Properties From Dft Calculations, Usama Kamran, David Guzman, Alejandro Strachan

The Summer Undergraduate Research Fellowship (SURF) Symposium

Materials modeling provides a cost and time efficient method for studying their properties, especially in nanotechnology where length and time scales are not accessible experimentally. Our research focuses on developing a tool useful for both instructional and research purposes that calculates material properties. The tool relies on density functional theory (DFT) calculations to compute specific properties for a wide range of materials including semiconductors, insulators, and metals. A major goal with our tool was to keep the GUI very simple for novice users, such as students, while retaining an advanced option section for experienced users, such as researchers. The tool …


Is There A Relationship Between Research Sponsorship And Publication Impact? An Analysis Of Funding Acknowledgments In Nanotechnology Papers, Jue Wang, Philip Shapira Feb 2015

Is There A Relationship Between Research Sponsorship And Publication Impact? An Analysis Of Funding Acknowledgments In Nanotechnology Papers, Jue Wang, Philip Shapira

Philip Shapira

This study analyzes funding acknowledgments in scientific papers to investigate relationships between research sponsorship and publication impacts. We identify acknowledgments to research sponsors for nanotechnology papers published in the Web of Science during a one-year sample period. We examine the citations accrued by these papers and the journal impact factors of their publication titles. The results show that publications from grant sponsored research exhibit higher impacts in terms of both journal ranking and citation counts than research that is not grant sponsored. We discuss the method and models used, and the insights provided by this approach as well as it …


Social Science Contributions Compared In Synthetic Biology And Nanotechnology, Philip Shapira, Jan Youtie, Yin Li Feb 2015

Social Science Contributions Compared In Synthetic Biology And Nanotechnology, Philip Shapira, Jan Youtie, Yin Li

Philip Shapira

With growing attention to societal issues and implications of synthetic biology, we investigate sources of social science publication knowledge in synthetic biology and probe what might be learned by comparison with earlier rounds of social science research in nanotechnology. “Social science” research is broadly defined to include publications in conventional social science as well as humanities, law, ethics, business, and policy fields. We examine the knowledge clusters underpinning social science publications in nanotechnology and synthetic biology using a methodology based on the analysis of cited references. Our analysis finds that social science research in synthetic biology already has traction and …


Imaging, Spectroscopic, Mechanical And Biocompatibility Studies Of Electrospun Tecoflex® Eg 80a Nanofibers And Composites Thereof Containing Multiwalled Carbon Nanotubes, Javier Macossay-Torres, Faheem A. Sheikh, Travis Cantu, Thomas Eubanks, M. Esther Salinas, Chakavak S. Farhangi, Hassan Ahmad, M. Shamshi Hassan, Myung-Seob Khil, Shivani K. Maffi, Hern Kim, Gary L. Bowlin Dec 2014

Imaging, Spectroscopic, Mechanical And Biocompatibility Studies Of Electrospun Tecoflex® Eg 80a Nanofibers And Composites Thereof Containing Multiwalled Carbon Nanotubes, Javier Macossay-Torres, Faheem A. Sheikh, Travis Cantu, Thomas Eubanks, M. Esther Salinas, Chakavak S. Farhangi, Hassan Ahmad, M. Shamshi Hassan, Myung-Seob Khil, Shivani K. Maffi, Hern Kim, Gary L. Bowlin

Chemistry Faculty Publications and Presentations

The present study discusses the design, development and characterization of electrospun Tecoflex® EG 80A class of polyurethane nanofibers and the incorporation of multiwalled carbon nanotubes (MWCNTs) to these materials. Scanning electron microscopy results confirmed the presence of polymer nanofibers, which showed a decrease in fiber diameter at 0.5% wt. and 1% wt. MWCNTs loadings, while transmission electron microscopy showed evidence of the MWCNTs embedded within the polymer matrix. The fourier transform infrared spectroscopy and Raman spectroscopy were used to elucidate the polymer-MWCNTs intermolecular interactions, indicating that the C-N and N-H bonds in polyurethanes are responsible for the interactions with MWCNTs. …


Computational Study Of Sodium Magnesium Hydride For Hydrogen Storage Applications, Fernando Antonio Soto Valle Oct 2014

Computational Study Of Sodium Magnesium Hydride For Hydrogen Storage Applications, Fernando Antonio Soto Valle

Doctoral Dissertations

Hydrogen offers considerable potential benefits as an energy carrier. However, safe and convenient storage of hydrogen is one of the biggest challenges to be resolved in the near future. Sodium magnesium hydride (NaMgH 3) has attracted attention as a hydrogen storage material due to its light weight and high volumetric hydrogen density of 88 kg/m3. Despite the advantages, hydrogen release in this material occurs at approximately 670 K, which is well above the operable range for on-board hydrogen storage applications. In this regard, hydrogen release may be facilitated by substitution doping of transition-metals. This dissertation describes first-principles computational methods that …


The Simulation Of Resonant Tunneling Diodes, Woodrow A. Gilbertson, Pengyu Long, Jim Fonseca, Gerhard Klimeck Aug 2014

The Simulation Of Resonant Tunneling Diodes, Woodrow A. Gilbertson, Pengyu Long, Jim Fonseca, Gerhard Klimeck

The Summer Undergraduate Research Fellowship (SURF) Symposium

The goal of this project is to improve the simulation of an electrical device known as a Resonant Tunneling Diode (RTD). Diodes are in most electronic devices today, but RTDs have 10 times greater switching speeds than regular diodes. This increase in efficiency would have impacts from supercomputers to the next big cell phone. The increased functionality of the simulation tool will come from implementing more recent mathematical solvers and modeling techniques. The simulation tool makes use of a variant of Non-Equilibrium Green Functions (NEGF) with an effective mass approximation. The two contacts are treated as equilibrium regions and the …


Thermoelectric (Te) Device Made Using Pbte Nanocrystal Coated Glass Fibers, Xiaoqin Zhu, Scott W. Finefrock, Yue Wu Aug 2014

Thermoelectric (Te) Device Made Using Pbte Nanocrystal Coated Glass Fibers, Xiaoqin Zhu, Scott W. Finefrock, Yue Wu

The Summer Undergraduate Research Fellowship (SURF) Symposium

Around 60 % of the energy produced in the U.S. in 2013 was wasted and most of this was dissipated in the form of heat. Thermoelectric materials could potentially harvest part of the energy being wasted by converting heat energy into electrical energy. Lead telluride nanocrystals are an interesting thermoelectric material particularly for solution-based coating of flexible substrates. The purpose of this project is to develop a working thermoelectric device using p-n pairs of PbTe nanocrystal coated glass fibers. In this project, p- and n- type PbTe nanocrystals are synthesized in solution. Bare glass fibers are sequentially dipped in solutions …


Granular Matter: Microstructural Evolution And Mechanical Response, Aashish Ghimire, Ishan Srivastava, Timothy S. Fisher Aug 2014

Granular Matter: Microstructural Evolution And Mechanical Response, Aashish Ghimire, Ishan Srivastava, Timothy S. Fisher

The Summer Undergraduate Research Fellowship (SURF) Symposium

Heterogeneous (nano) composites, manufactured by the densification of variously sized grains, represent an important and ubiquitous class of technologically relevant materials. Typical grain sizes in such materials range from macroscopic to a few nanometers. The morphology exhibited by such disordered materials is complex and intricately connected with its thermal and electrical transport properties. It is important to quantify the geometric features of these materials and simulate the fabrication process. Additionally, granular materials exhibit complex structural and mechanical properties that crucially govern their reliability during industrial use. In this work, we simulate the densification of soft deformable grains from a low-density …


Self-Assembly Of Gold Nanosphere Dimers By Inertial Force, George Andrew Christopher Sakhel Aug 2014

Self-Assembly Of Gold Nanosphere Dimers By Inertial Force, George Andrew Christopher Sakhel

Graduate Theses and Dissertations

The morphology and composition of a nanoparticle (NP) play a critical role in determining the NP's properties and function. To date, researchers have created a myriad of NPs of different shapes, sizes, and compositions with interesting attributes and applications ushering a revolution in medicine, electronics, microscopy, and microfluidics.

In this study, gold (Au) nanosphere dimers (NSDs) have been synthesized through a novel self-assembly method. These particles were created from Au NPs mono-dispersed in aqueous solution via a process of centrifugation and capping agent replacement. Au NSDs consist of two Au NPs combined together with minimal gaps between them. Optical spectral …


Developent Of A Phospholipid Encapsulation Process For Quantum Dots To Be Used In Biologic Applications, Logan Grimes Jun 2014

Developent Of A Phospholipid Encapsulation Process For Quantum Dots To Be Used In Biologic Applications, Logan Grimes

Master's Theses

The American Cancer Society predicts that 1,665,540 people will be diagnosed with cancer, and 585,720 people will die from cancer in 2014. One of the most common types of cancer in the United States is skin cancer. Melanoma alone is predicted to account for 10,000 of the cancer related deaths in 2014. As a highly mobile and aggressive form of cancer, melanoma is difficult to fight once it has metastasized through the body. Early detection in such varieties of cancer is critical in improving survival rates in afflicted patients. Present methods of detection rely on visual examination of suspicious regions …


Criterion For An Oscillatory Charged Jet During The Bubble Spinning Process, Ji-Huan He, H.Y. Kong Jan 2014

Criterion For An Oscillatory Charged Jet During The Bubble Spinning Process, Ji-Huan He, H.Y. Kong

Ji-Huan He

The oscillatory diameter of the charged jet during the bubble electrospinning results in beads on the obtained nanofibers. We demonstrate that the applied voltage and the initial flow rate of the jet are the crucial parameters that are necessary to control morphology of the nanofibers. We also find that there is a criterion for production of smooth nanofibers without beads. The theory developed in this paper can be extended to the classical electrospinning and the blown bubble-spinning.


Connecting Research On Social Issues In Nanotechnology: The Center For Nanotechnology In Society At Arizona State University, Jan Youtie, Philip Shapira Jan 2014

Connecting Research On Social Issues In Nanotechnology: The Center For Nanotechnology In Society At Arizona State University, Jan Youtie, Philip Shapira

Philip Shapira

Central to the emergence of new research topics is the creation of a research network. This paper looks at the creation of a network of researchers of social issues in nanotechnology and the role of the Center for Nanotechnology in Society at Arizona State University (CNS-ASU) in the creation of this network. While there has been US investment in societal research on nanotechnology, a debate exists about the extent to which a research community has been created through these investments. This paper uses three approaches to examine the extent to which CNS-ASU is associated with the development of a research …


A Study Of Titania Nanotube Synthesis In Chloride-Ion-Containing Media, E. Panaitescu, C. Richter, L. Menon Dec 2013

A Study Of Titania Nanotube Synthesis In Chloride-Ion-Containing Media, E. Panaitescu, C. Richter, L. Menon

Eugen Panaitescu

We have completed a detailed experimental investigation into the recently discovered synthesis of titania nanotubes in chloride-ion-containing media. We show that the role of the chloride ions is catalytic and it has a strong effect in increasing the reactivity of the solution, while the nature of cations has no visible role. We have identified the critical parameters for optimal growth and fast production of nanotubes, and a basic growth mechanism for the tubes is proposed. This opens routes for significant improvements of the method toward uniformity and/or better overall yield, making it a viable alternative to the present established methods.


An Integrated Multidisciplinary Nanoscience Concentration Certificate Program For Stem Education, Karen S. Martirosyan, Mikhail M. Bouniaev, Malik Rakhmanov, Ahmed Touhami, Nazmul Islam, Davood Askari, Tarek Trad, Dmitri Litvinov, Sergey E. Lyshevski Dec 2013

An Integrated Multidisciplinary Nanoscience Concentration Certificate Program For Stem Education, Karen S. Martirosyan, Mikhail M. Bouniaev, Malik Rakhmanov, Ahmed Touhami, Nazmul Islam, Davood Askari, Tarek Trad, Dmitri Litvinov, Sergey E. Lyshevski

Physics and Astronomy Faculty Publications and Presentations

Integration of nanoscience and nanotechnology curricula into the College of Science, Mathematics, and Technology (CSMT) at the University of Texas at Brownsville (UTB) is reported. The rationale for the established multidisciplinary Nanoscience Concentration Certificate Program (NCCP) is to: (i) develop nanotechnology-relevant courses within a comprehensive Science, Engineering and Technology curriculum, and, to offer students an opportunity to graduate with a certificate in nanoscience and nanotechnology; (ii) to contribute to students' success in achieving student outcomes across all college's majors, and, improve the breath, depth and quality of science, technology, engineering and mathematics (STEM) graduates' education; (iii) through NCCP, recruit certificate- …


Elementary Studies Of Twisted Bilayer Graphene, Branden P. Burns, Yong P. Chen Oct 2013

Elementary Studies Of Twisted Bilayer Graphene, Branden P. Burns, Yong P. Chen

The Summer Undergraduate Research Fellowship (SURF) Symposium

In the nanotechnology field, some existing materials and applications are harmful to the environment, not efficient for certain tasks, or too expensive to be fully utilized. Graphene is a strong and cheap material that can be used to improve current nanotechnologies for more practical uses in society. Twisted bilayer graphene (TBG) is an orientation of graphene layers that exhibit different properties than regular bilayer graphene. It is made by placing a single layer of graphene on top of another at an angle with respect to the other lattice orientation. Understanding the characteristics of TBG is important to uncover more physics …