Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Atomic force microscopy

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 12 of 12

Full-Text Articles in Nanoscience and Nanotechnology

Optimization Of Protein-Protein Interaction Measurements For Drug Discovery Using Afm Force Spectroscopy, Yongliang Yang, Bixi Zeng, Zhiyong Sun, Amir Monemianesfahani, Jing Hou, Nian-Dong Jiao, Lianqing Liu, Liangliang Chen, Marc D. Basson, Lixin Dong, Ruiguo Yang, Ning Xi Jan 2019

Optimization Of Protein-Protein Interaction Measurements For Drug Discovery Using Afm Force Spectroscopy, Yongliang Yang, Bixi Zeng, Zhiyong Sun, Amir Monemianesfahani, Jing Hou, Nian-Dong Jiao, Lianqing Liu, Liangliang Chen, Marc D. Basson, Lixin Dong, Ruiguo Yang, Ning Xi

Department of Mechanical and Materials Engineering: Faculty Publications

Increasingly targeted in drug discovery, protein-protein interactions challenge current high throughput screening technologies in the pharmaceutical industry. Developing an effective and efficient method for screening small molecules or compounds is critical to accelerate the discovery of ligands for enzymes, receptors and other pharmaceutical targets. Here, we report developments of methods to increase the signal-to-noise ratio (SNR) for screening protein-protein interactions using atomic force microscopy (AFM) force spectroscopy. We have demonstrated the effectiveness of these developments on detecting the binding process between focal adhesion kinases (FAK) with protein kinase B (Akt1), which is a target for potential cancer drugs. These developments …


An Investigation On The Structure Of Au(111)/Imidazolium-Based Ionic Liquid Interface: Effect Of Alkyl Side Chain Length, Li Chen, Shuai Liu, Mian-Gang Li, Jian-Jia Su, Jia-Wei Yan, Bing-Wei Mao Oct 2018

An Investigation On The Structure Of Au(111)/Imidazolium-Based Ionic Liquid Interface: Effect Of Alkyl Side Chain Length, Li Chen, Shuai Liu, Mian-Gang Li, Jian-Jia Su, Jia-Wei Yan, Bing-Wei Mao

Journal of Electrochemistry

In this work, we comparatively investigated the interfacial structures at Au(111) electrode surfaces in two ionic liquids (ILs) with different alkyl chain lengths by combining AFM force curve technique and electrochemical methods. The number and stability of the layering structures, and their potential-dependency were analyzed. The experimental results indicated that the tendencies of force-potential curves in the two ILs behave the same way. At potentials close to PZC, the ions arrange loosely, which lowers the stability of the layering structure. As the potential shifting away from PZC, more ions attach to electrode surface, which increases the stability of layering structure, …


Investigation Of The Acoustic Response Of A Confined Mesoscopic Water Film Utilizing A Combined Atomic Force Microscope And Shear Force Microscope Technique, Monte Allen Kozell Jul 2018

Investigation Of The Acoustic Response Of A Confined Mesoscopic Water Film Utilizing A Combined Atomic Force Microscope And Shear Force Microscope Technique, Monte Allen Kozell

Dissertations and Theses

An atomic force microscopy beam-like cantilever is combined with an electrical tuning fork to form a shear force probe that is capable of generating an acoustic response from the mesoscopic water layer under ambient conditions while simultaneously monitoring force applied in the normal direction and the electrical response of the tuning fork shear force probe. Two shear force probes were designed and fabricated. A gallium ion beam was used to deposit carbon as a probe material. The carbon probe material was characterized using energy dispersive x-ray spectroscopy and scanning transmission electron microscopy. The probes were experimentally validated by demonstrating the …


Integrated Nanoscale Imaging And Spatial Recognition Of Biomolecules On Surfaces, Congzhou Wang Jan 2015

Integrated Nanoscale Imaging And Spatial Recognition Of Biomolecules On Surfaces, Congzhou Wang

Theses and Dissertations

Biomolecules on cell surfaces play critical roles in diverse biological and physiological processes. However, conventional bulk scale techniques are unable to clarify the density and distribution of specific biomolecules in situ on single, living cell surfaces at the micro or nanoscale. In this work, a single cell analysis technique based on Atomic Force Microscopy (AFM) is developed to spatially identify biomolecules and characterize nanomechanical properties on single cell surfaces. The unique advantage of these AFM-based techniques lies in the ability to operate in situ (in a non-destructive fashion) and in real time, under physiological conditions or controlled micro-environments.

First, AFM-based …


Accurate Force Spectroscopy In Tapping Mode Atomic Force Microscopy In Liquids, Xin Xu, John Melcher, Arvind Raman Sep 2014

Accurate Force Spectroscopy In Tapping Mode Atomic Force Microscopy In Liquids, Xin Xu, John Melcher, Arvind Raman

Xin Xu

Existing force spectroscopy methods in tapping mode atomic force microscopy (AFM) such as higher harmonic inversion [M. Stark, R. W. Stark, W. M. Heckl, and R. Guckenberger, Proc. Natl. Acad. Sci. U. S. A. 99, 8473 (2002)] or scanning probe acceleration microscopy [J. Legleiter, M. Park, B. Cusick, and T. Kowalewski, Proc. Natl. Acad. Sci. U. S. A. 103, 4813 (2006)] or integral relations [M. Lee and W. Jhe, Phys. Rev. Lett. 97, 036104 (2006); S. Hu and A. Raman, Nanotechnology 19, 375704 (2008); H. Holscher, Appl. Phys. Lett. 89, 123109 (2006); A. J. Katan, Nanotechnology 20, 165703 (2009)] require …


Microfluidic-Assisted Atomic Force Microscopy For The Mechanical Characterization Of Soft Biological Materials, Aaron Peter Mosier Jan 2013

Microfluidic-Assisted Atomic Force Microscopy For The Mechanical Characterization Of Soft Biological Materials, Aaron Peter Mosier

Legacy Theses & Dissertations (2009 - 2024)

Viable methods for bacterial biofilm remediation require a fundamental understanding of biofilm mechanical properties and their dependence on dynamic environmental conditions. Mechanical test data, quantifying elasticity or adhesion, may be used to perform physical modeling of biofilm behavior, thus enabling the development of novel remediation strategies. To achieve real-time, dynamic measurements of these properties, a novel analysis platform consisting of a microfluidic flowcell device has been designed and fabricated for in situ analysis using atomic force microscopy (AFM) and confocal laser scanning microscopy (CLSM). The flowcell consists of microfluidic channels for biofilm establishment that are then converted into an open …


Interfacial And Electrokinetic Characterization Of Ipa Solutions Related To Semiconductor Wafer Drying And Cleaning, Jin-Goo Park, Sang-Ho Lee, Ju-Suk Ryu, Yi-Koan Hong, Tae-Gon Kim, Ahmed A. Busnaina Apr 2012

Interfacial And Electrokinetic Characterization Of Ipa Solutions Related To Semiconductor Wafer Drying And Cleaning, Jin-Goo Park, Sang-Ho Lee, Ju-Suk Ryu, Yi-Koan Hong, Tae-Gon Kim, Ahmed A. Busnaina

Jin-Goo Park

In this study, the interfacial and electrokinetic phenomena of mixtures of isopropyl alcohol (IPA) and deionized (DI) water in relation to semiconductor wafer drying is investigated. The dielectric constant of an IPA solution linearly decreased from 78 to 18 with the addition of IPA to DI water. The viscosity of IPA solutions increased as the volume percentage of IPA in DI water increased. The zeta potentials of silica particles and silicon wafers were also measured in IPA solutions. The zeta potential approached neutral values as the volume ratio of IPA in DI water increased. A surface tension decrease from 72 …


Interfacial And Electrokinetic Characterization Of Ipa Solutions Related To Semiconductor Wafer Drying And Cleaning, Jin-Goo Park, Sang-Ho Lee, Ju-Suk Ryu, Yi-Koan Hong, Tae-Gon Kim, Ahmed A. Busnaina Jun 2011

Interfacial And Electrokinetic Characterization Of Ipa Solutions Related To Semiconductor Wafer Drying And Cleaning, Jin-Goo Park, Sang-Ho Lee, Ju-Suk Ryu, Yi-Koan Hong, Tae-Gon Kim, Ahmed A. Busnaina

Ahmed A. Busnaina

In this study, the interfacial and electrokinetic phenomena of mixtures of isopropyl alcohol (IPA) and deionized (DI) water in relation to semiconductor wafer drying is investigated. The dielectric constant of an IPA solution linearly decreased from 78 to 18 with the addition of IPA to DI water. The viscosity of IPA solutions increased as the volume percentage of IPA in DI water increased. The zeta potentials of silica particles and silicon wafers were also measured in IPA solutions. The zeta potential approached neutral values as the volume ratio of IPA in DI water increased. A surface tension decrease from 72 …


Accurate Force Spectroscopy In Tapping Mode Atomic Force Microscopy In Liquids, Xin Xu, John Melcher, Arvind Raman Jan 2010

Accurate Force Spectroscopy In Tapping Mode Atomic Force Microscopy In Liquids, Xin Xu, John Melcher, Arvind Raman

Birck and NCN Publications

Existing force spectroscopy methods in tapping mode atomic force microscopy (AFM) such as higher harmonic inversion [M. Stark, R. W. Stark, W. M. Heckl, and R. Guckenberger, Proc. Natl. Acad. Sci. U. S. A. 99, 8473 (2002)] or scanning probe acceleration microscopy [J. Legleiter, M. Park, B. Cusick, and T. Kowalewski, Proc. Natl. Acad. Sci. U. S. A. 103, 4813 (2006)] or integral relations [M. Lee and W. Jhe, Phys. Rev. Lett. 97, 036104 (2006); S. Hu and A. Raman, Nanotechnology 19, 375704 (2008); H. Holscher, Appl. Phys. Lett. 89, 123109 (2006); A. J. Katan, Nanotechnology 20, 165703 (2009)] require …


Strain Energy And Lateral Friction Force Distributions Of Carbon Nanotubes Manipulated Into Shapes By Atomic Force Microscopy, Mark C. Strus, Roya R. Lahiji, Pablo Ares, Vincente Lopez, Arvind Raman, Ron R. Reifenberger Aug 2009

Strain Energy And Lateral Friction Force Distributions Of Carbon Nanotubes Manipulated Into Shapes By Atomic Force Microscopy, Mark C. Strus, Roya R. Lahiji, Pablo Ares, Vincente Lopez, Arvind Raman, Ron R. Reifenberger

Other Nanotechnology Publications

The interplay between local mechanical strain energy and lateral frictional forces determines the shape of carbon nanotubes on substrates. In turn, because of its nanometer-size diameter, the shape of a carbon nanotube strongly influences its local electronic, chemical, and mechanical properties. Few, if any, methods exist for resolving the strain energy and static frictional forces along the length of a deformed nanotube supported on a substrate. We present a method using nonlinear elastic rod theory in which we compute the flexural strain energy and static frictional forces along the length of single walled carbon nanotubes (SWCNTs) manipulated into various shapes …


Influence Of Reaction With Xef2 On Surface Adhesion Of Al And Al2o3 Surfaces, Tianfu Zhang, Jeong Park, Wenyu Huang, Gabor A. Somoraji Jan 2008

Influence Of Reaction With Xef2 On Surface Adhesion Of Al And Al2o3 Surfaces, Tianfu Zhang, Jeong Park, Wenyu Huang, Gabor A. Somoraji

Wenyu Huang

The change in surfaceadhesion after fluorination of Al and Al2O3surfaces using XeF2 was investigated with atomic force microscopy. The chemical interaction between XeF2 and Al and Al2O3surfaces was studied by in situx-ray photoelectron spectroscopy. Fresh Al and Al2O3surfaces were obtained by etching top silicon layers of Si∕Al and Si∕Al2O3 with XeF2. The surfaceadhesion and chemical composition were measured after the exposure to air or annealing (at 200°C under vacuum). The correlation between the adhesion force increase and presence of AlF3 on the surface was revealed.


Growth By Molecular Beam Epitaxy Of Self-Assembled Inas Quantum Dots On Inalas And Ingaas Lattice-Matched To Inp, Paul J. Simmonds, H W. Li, H E. Beere, P See, A J. Shields, D A. Ritchie May 2007

Growth By Molecular Beam Epitaxy Of Self-Assembled Inas Quantum Dots On Inalas And Ingaas Lattice-Matched To Inp, Paul J. Simmonds, H W. Li, H E. Beere, P See, A J. Shields, D A. Ritchie

Paul J. Simmonds

The authors report the results of a detailed study of the effect of growth conditions, for molecular beam epitaxy, on the structural and optical properties of self-assembled InAs quantum dots (QDs) on In0.524Al0.476As. InAs QDs both buried in, and on top of, In0.524Al0.476As were analyzed using photoluminescence (PL) and atomic force microscopy. InAs QD morphology and peak PL emission wavelength both scale linearly with deposition thickness in monolayers (MLs). InAs deposition thickness can be used to tune QD PL wavelength by 170 nm/ML, over a range of almost 700 nm. Increasing growth …