Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Nanoscience and Nanotechnology

Non-Equilibrium Colloidal Phenomena In Magnetic Fields And Photoillumination: From Controlling Living Microbots To Understanding Microplastics, Ahmed Al Harraq Jan 2023

Non-Equilibrium Colloidal Phenomena In Magnetic Fields And Photoillumination: From Controlling Living Microbots To Understanding Microplastics, Ahmed Al Harraq

LSU Doctoral Dissertations

Colloids are a ubiquitous class of materials composed of microscopic particles suspended in a continuous phase which are found in everyday products and in nature. Colloids are also useful models for studying the spontaneous arrangement of matter from individual building blocks to mesophases. Standard treatment of colloid science is based on the assumption of equilibrium conditions, as defined in traditional thermodynamics. However, novel assembly mechanisms and motility are unlocked by pushing colloids away from equilibrium using external energy. In addition, many colloids in nature and in industrial applications exchange energy and mass with the surrounding environment thus behaving in a …


Incorporation Of Zinc In Pre-Alloyed Cuin[Zn]S2/Zns Quantum Dots, Jean Carlos Morales Orocu Dec 2021

Incorporation Of Zinc In Pre-Alloyed Cuin[Zn]S2/Zns Quantum Dots, Jean Carlos Morales Orocu

Graduate Theses and Dissertations

Since the early 2000s heavy-metal-free quantum dots (QDs) such as CuInS2/ZnS have attempted to replace CdSe, their heavy-metal-containing counterparts. CuInS2/ZnS is synthesized in a two-step process that involves the fabrication of CuInS2 (CIS) nanocrystals (NCs) followed by the addition of zinc precursors. Instead of the usual core/shell architecture often exhibited by binary QDs, coating CIS QDs results in alloyed and/or partially alloyed cation-exchange (CATEX) QDs. The effect that zinc has on the properties of CIS NCs was studied by incorporating zinc during the first step of the synthesis. Different In:Cu:Zn ratios were employed in this study, maintaining a constant 4:1 …


Synthesis, Self-Assembly And High-Pressure Properties Of Nanoparticles And Hybrid Nanocomposites, Lingyao Meng Jul 2020

Synthesis, Self-Assembly And High-Pressure Properties Of Nanoparticles And Hybrid Nanocomposites, Lingyao Meng

Nanoscience and Microsystems ETDs

Nanoparticles have gained significant scientific interests owing to their unique structural dimensions, size- and shape-tunable properties, and numerous fascinating applications, from opto-electronics, sensor devices, to energy, environmental, and medical fields. Furthermore, the synergistic integration of other materials, including organic polymers, with nanoparticles provides new opportunities and strategies to obtain nanocomposites with superior properties and functionalities. While there is already significant research on the synthesis and characterizations of nanoparticles and hybrid nanocomposites, some research questions, such as how to design and control the interfacial morphology in polymer/nanoparticle hybrid nanocomposites, how to synthesize metal- organic framework (MOF) nanoparticles in well-defined and uniform …


Engineered Nanoparticles For Site-Specific Bioorthogonal Catalysis: Imaging And Therapy, Riddha Das Mar 2020

Engineered Nanoparticles For Site-Specific Bioorthogonal Catalysis: Imaging And Therapy, Riddha Das

Doctoral Dissertations

Bioorthogonal catalysis offers a strategy for chemical transformations complementary to bioprocesses and has proven to be a powerful tool in biochemistry and medical sciences. Transition metal catalysts (TMCs) have emerged as a powerful tool to execute selective chemical transformations, however, lack of biocompatibility and stability limits their use in biological applications. Incorporation of TMCs into nanoparticle monolayers provides a versatile strategy for the generation of bioorthogonal nanocatalysts known as “nanozymes”. We have fabricated a family of nanozymes using gold nanoparticles (AuNPs) as scaffolds featuring diverse chemical functional groups for controlled localization of nanozymes in biological environments, providing unique strategies for …


Surface Area And Electrocatalytic Properties Of Feni Nanoparticles For The Oxygen Evolution Reaction (Oer), James Burrow May 2018

Surface Area And Electrocatalytic Properties Of Feni Nanoparticles For The Oxygen Evolution Reaction (Oer), James Burrow

Chemical Engineering Undergraduate Honors Theses

Iron-nickel bimetallic electrocatalysts have recently emerged as some of the best candidates for the oxygen evolution reaction (OER) in alkaline electrolyte. Understanding the effects of composition and morphology of iron-nickel nanoparticles is crucial for optimization and enhanced electrocatalyst performance. Both physical surface area and electrochemical surface area (ECSA) are functions of morphology. In this study, four different iron-nickel nanoparticle catalysts were synthesized. The catalysts were varied based on morphology (alloy versus core-shell) and composition (low, medium, and high stabilizer concentration). Brunauer-Emmett-Teller (BET) surface area analysis was conducted on three of the synthesized iron-nickel nanoparticles using a physisorption analyzer while electrochemical …


Mesoscale Computational Studies Of Thin-Film Bijels, Joseph M. Carmack May 2018

Mesoscale Computational Studies Of Thin-Film Bijels, Joseph M. Carmack

Graduate Theses and Dissertations

Bijels are a relatively new class of soft materials that have many potential applications in the technology areas of energy, medicine, and environmental sustainability. They are formed by the arrest of binary liquid spinodal decomposition by a dispersion of solid colloidal nanoparticles. This dissertation presents an in-depth simulation study of Bijels constrained to thin-film geometries and in the presence of electric fields. We validate the computational model by comparing simulation results with previous computational modeling and experimental research. In the absence of suspended particles, we demonstrate that the model accurately captures the rich kinetics associated with diffusion-based surface-directed spinodal decomposition. …


Synthesis, Characterization, And Enhanced Magnetic Properties Of Iron Carbide Nanomaterials, Brent M. Williams Jan 2017

Synthesis, Characterization, And Enhanced Magnetic Properties Of Iron Carbide Nanomaterials, Brent M. Williams

Theses and Dissertations

Permanent magnets are classified as hard magnetic materials with the main purpose of generating flux for applications such as electric motors, turbines, and hard drives. High coercivity, magnetic remanence, and saturation values with high stability are some of the requirements for permanent magnets. Rare-earth magnets including neodymium and samarium based magnets are known to have superior magnetic properties due to their high magnetocrystalline anisotropy. However, due to the price of rare-earth materials development of alternate permanent magnets composed of inexpensive materials is an ongoing process. Previously cobalt carbide (CoxC) have shown promise as a potential rare-earth free magnet …


Ginseng Polysaccharides Nanoparticles - Synthesis, Characterization, And Biological Activity, Kazi Farida Akhter Aug 2016

Ginseng Polysaccharides Nanoparticles - Synthesis, Characterization, And Biological Activity, Kazi Farida Akhter

Electronic Thesis and Dissertation Repository

North American (NA) ginseng is a widely used medicinal plant. Polysaccharides (PS), the major medicinal fractions derived from NA ginseng root, have been shown several biological activities including anti-carcinogenic, anti-aging, immunostimulatory and antioxidant activity. This work focused on nanoprocessing of ginseng PS for enhancing their immunostimulation. Herein, we have developed a novel microfluidic approach to synthesize ginseng PS nanoparticles (NPs) from NA ginseng root. The microfluidics was found to provide unimodal PS spheres down to 20 nm with very narrow particle size distributions. In addition, the immunostimulating effect was investigated on Murine macrophage cell lines, with the results revealing an …


Symbiotic Plasmonic Nanomaterials: Synthesis And Properties, Abhinav Malasi May 2016

Symbiotic Plasmonic Nanomaterials: Synthesis And Properties, Abhinav Malasi

Doctoral Dissertations

Metal particles of the dimensions of the order of 1 to 100's of nanometers show unique properties that are not clearly evident in their bulk state. These nanoparticles are highly reactive and sensitive to the changes in the vicinity of the particle surface and hence find applications in the field of sensing of chemical and biological agents, catalysis, energy harvesting, data storage and many more. By synthesizing bimetallic nanoparticles, a single nanoparticle can show multifunctional characteristics. The focus of this thesis is to detail the synthesis and understand the properties of bimetallic nanomaterial systems that show interesting optical, chemical, and …


Investigating The Size Dependent Material Properties Of Nanoceria, Bushra B. Alam Jan 2016

Investigating The Size Dependent Material Properties Of Nanoceria, Bushra B. Alam

Legacy Theses & Dissertations (2009 - 2024)

Nanoceria is widely being investigated for applications as support materials for fuel cell catalysts, free radical scavengers, and as chemical and mechanical abrasives due to its high antioxidant capacity and its oxygen buffering capacity. This antioxidant or oxygen buffering capacity has been reported to be highly size dependent and related to its redox properties. However, the quantification of this antioxidant capacity has not been well defined or understood and has been often been carried out using colorimetric assays which do not directly correlate to ceria nanoparticle properties. Fabrication rules for developing materials with optimal antioxidant/oxygen buffering capacities are not yet …


In Vacuo Fabrication And Electronic Structure Characterization Of Atomic Layer Deposition Thin Films, Michael Schaefer Nov 2015

In Vacuo Fabrication And Electronic Structure Characterization Of Atomic Layer Deposition Thin Films, Michael Schaefer

USF Tampa Graduate Theses and Dissertations

Improvement of novel electronic devices is possible by tailor-designing the electronic structure at device interfaces. Common problems observed at interfaces are related to unwanted band alignment caused by the chemical diversity of interface partners, influencing device performance negatively. One way to address this problem is by introducing ultra-thin interfacial dipole layers, steering the band alignment in a desired direction. The requirements are strict in terms of thickness, conformity and low density of defects, making sophisticated deposition techniques necessary. Atomic layer deposition (ALD) with its Ångstrom-precise thickness control can fulfill those requirements.

The work presented here encompasses the implementation of an …


On Thermal Aging Prevention In Polymer Core Composite Conductor Rods, Joe D. Hoffman Jan 2015

On Thermal Aging Prevention In Polymer Core Composite Conductor Rods, Joe D. Hoffman

Electronic Theses and Dissertations

Increased energy usage in the United States and worldwide is driving the demand for new technologies to transmit electrical power in greater quantities and with reliable, safe, and more efficient methods. One recent innovation is to replace the standard Aluminum Conductor Steel Reinforced electrical transmission conductor with a new conductor design that utilizes a fiber reinforced polymer core rod to support a fully annealed aluminum conductor. This new technology that includes a hybrid carbon fiber/epoxy and glass fiber/epoxy support core allows for better efficiency and for greater current to be transmitted in the same size and weight line. These new …


Developent Of A Phospholipid Encapsulation Process For Quantum Dots To Be Used In Biologic Applications, Logan Grimes Jun 2014

Developent Of A Phospholipid Encapsulation Process For Quantum Dots To Be Used In Biologic Applications, Logan Grimes

Master's Theses

The American Cancer Society predicts that 1,665,540 people will be diagnosed with cancer, and 585,720 people will die from cancer in 2014. One of the most common types of cancer in the United States is skin cancer. Melanoma alone is predicted to account for 10,000 of the cancer related deaths in 2014. As a highly mobile and aggressive form of cancer, melanoma is difficult to fight once it has metastasized through the body. Early detection in such varieties of cancer is critical in improving survival rates in afflicted patients. Present methods of detection rely on visual examination of suspicious regions …


Effect Of Relative Humidity In High Temperature Oxidation Of Ceria Nanoparticles Coating On 316l Austenitic Stainless Steel, Luis Giraldez Pizarro Aug 2013

Effect Of Relative Humidity In High Temperature Oxidation Of Ceria Nanoparticles Coating On 316l Austenitic Stainless Steel, Luis Giraldez Pizarro

Theses and Dissertations

A solution of 20 wt. % colloidal dispersion of Cerium Oxide (CeO2) in 2.5% of acetic acid, was used for depositing a coating film on an austenitic stainless steel 316L. Cerium compounds have been distinguished as potential corrosion inhibitors in coatings over several alloys. The oxidation behavior of the cerium oxide coating on 316L austenitic stainless steel alloy was evaluated in dry and humid environments, the weight changes (W/A) was monitored as a function of time using a custom built Thermogravimetrical Analysis (TGA) instrument at temperatures of 750C, 800C and 850C, and different relative humidity levels (0%, 10% and 20%) …


Multidentate Resorcinarene Surfactants For The Phase Transfer Of Metal Nanoparticles And Nanodiamonds: Applications In Catalysis And Diamond Film Growth, Vara Prasad Sheela Jul 2012

Multidentate Resorcinarene Surfactants For The Phase Transfer Of Metal Nanoparticles And Nanodiamonds: Applications In Catalysis And Diamond Film Growth, Vara Prasad Sheela

Chemistry & Biochemistry Theses & Dissertations

One main objective of the present work is to functionalize cuboctahedral platinum nanoparticles with various multidentate resorcinarene surfactants and study their influence in determining their catalytic activity. We hypothesized that catalytically active and recyclable catalysts can be achieved by incomplete yet strong passivation of the nanoparticle surfaces by using multidentate resorcinarene surfactants. We have developed phase transfer protocols for functionalizing cuboctahedral platinum nanoparticles with resorcinarene thiol or amine. Fluorescence assay confirmed that both these nanoparticles contained almost comparable unpassivated metal area. The activity of such phase transferred nanoparticles was tested in the catalytic hydrogenation of allyl alcohol. The conversion of …


Ultrafast Electron Diffraction Study Of The Dynamics Of Antimony Thin Films And Nanoparticles, Mahmoud Abdel-Fattah Jul 2011

Ultrafast Electron Diffraction Study Of The Dynamics Of Antimony Thin Films And Nanoparticles, Mahmoud Abdel-Fattah

Electrical & Computer Engineering Theses & Dissertations

The ultrafast fast phenomena that take place following the application of a 120 fs laser pulse on 20 nm antimony thin films and 40 nm nanoparticles were studied using time-resolved electron diffraction. Samples are prepared by thermal evaporation, at small thickness (< 10 nm) antimony nanoparticles form while at larger thicknesses we get continuous thin films.

The samples are annealed and studied by static heating to determine their Debye temperatures, which were considerably less than the standard value. The thermal expansion under static heating also yielded the expansion coefficient of the sample material. Nanoparticle samples gave a very accurate thermal expansion coefficient (11 × 10-6 K-1).

Ultrafast time resolved electron diffraction …


Spectroscopic Investigation Of Palladium-Copper Bimetallic Systems For Pem Fuel Cell Catalysts, Timo Hofmann Jan 2009

Spectroscopic Investigation Of Palladium-Copper Bimetallic Systems For Pem Fuel Cell Catalysts, Timo Hofmann

UNLV Theses, Dissertations, Professional Papers, and Capstones

One of the main barriers to commercialization of polymer electrolyte membrane fuel cells systems is cost, which is largely due to the need of platinum (Pt)-containing catalysts. In this thesis we investigate bimetallic systems consisting of a base metal (copper) and a noble metal (palladium) that, as an alloy on the nanoscale, mimic the electronic properties that make Pt desirable as a catalyst.

We present a detailed investigation of the electronic structure of carbon-supported Pd/Cu nanoparticle catalysts, model bilayer thin film systems, alloys, and various metal reference samples. We have investigated the valence band structure of the catalysts using a …