Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

PDF

Materials Science and Engineering

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 252

Full-Text Articles in Nanoscience and Nanotechnology

Nano-Enhanced Composite Membranes For Water Desalination, Benjamin Fredrik Victor Sundling Von Fürstenrecht Jun 2019

Nano-Enhanced Composite Membranes For Water Desalination, Benjamin Fredrik Victor Sundling Von Fürstenrecht

Materials Engineering

In theory single walled carbon nanotubes (SWCNT) will aid in ion rejection due hydrophobicity and smoothness of the SWCNT. An efficient means of water desalination utilizing SWCNT in a membrane seems plausible. A lyotropic liquid crystal (LLC) solution was made with a synthesized polymerizable surfactant methacryloxy ethyl hexadecyl dimethyl ammonium bromide (C16MA) to help with vertical alignment of SWCNT. Due to SWCNT lack of solubility and tendency to agglomerate in water, a dispersion performed using an inert surfactant centrimonium bromide (CTAB) to make sure that the SWCNT were homogeneously dispersed in the solution without altering the hexagonal packing factor of ...


Defect Chemistry And Ion Intercalation During The Growth And Solid-State Transformation Of Metal Halide Nanocrystals, Bo Yin May 2019

Defect Chemistry And Ion Intercalation During The Growth And Solid-State Transformation Of Metal Halide Nanocrystals, Bo Yin

Engineering and Applied Science Theses & Dissertations

Abstract of the Dissertation

Defect Chemistry and Ion Intercalation During the Growth and Solid-State Transformation of Metal Halide Nanocrystals

Semiconductor metal halides as light-sensitive materials have applications in multiple areas, such as photographic film, antibacterial agents and photocatalysts. One focus of this dissertation is to achieve novel morphologies of ternary silver bromoiodide (AgBr1-xIx, 0

For the silver halide system, we demonstrate that the anion composition of AgBr1-xIx nanocrystals determines their shape through the introduction of twin defects as the nanocrystals are made more iodide-rich. AgBr1-xIx nanocrystals grow as single-phase, solid solutions with the rock salt crystal structure for anions compositions ...


Additive Manufacturing Of High Performance Flexible Thermoelectric Generators Using Nanoparticle Inks, Tony Valayil Varghese May 2019

Additive Manufacturing Of High Performance Flexible Thermoelectric Generators Using Nanoparticle Inks, Tony Valayil Varghese

Boise State University Theses and Dissertations

Flexible thermoelectric devices are attractive power sources for the growing demand of flexible electronics and sensors. Thermoelectric generators have an advantage due to no moving parts, silent operation and constant power production with a thermal gradient.

Conventional thermoelectric devices are rigid and fabricated using complex and relatively costly manufacturing processes, presenting a barrier to increase the market share of this technology. To overcome such barriers, this work focuses on developing near ambient-temperature flexible thermoelectric generators using relatively low-cost additive manufacturing processes. A screen printable ink was developed for transforming nanoparticle ink into high-performance flexible thermoelectric generators with a peak thermoelectric ...


Plasmonic Properties Of Nanoparticle And Two Dimensional Material Integrated Structure, Desalegn Tadesse Debu May 2019

Plasmonic Properties Of Nanoparticle And Two Dimensional Material Integrated Structure, Desalegn Tadesse Debu

Theses and Dissertations

Recently, various groups have demonstrated nano-scale engineering of nanostructures for optical to infrared wavelength plasmonic applications. Most fabrication technique processes, especially those using noble metals, requires an adhesion layer. Previously proposed theoretical work to support experimental measurement often neglect the effect of the adhesion layers. The first finding of this work focuses on the impact of the adhesion layer on nanoparticle plasmonic properties. Gold nanodisks with a titanium adhesion layer are investigated by calculating the scattering, absorption, and extinction cross-section with numerical simulations using a finite difference time domain (FDTD) method. I demonstrate that a gold nanodisk with an adhesive ...


Iron-Containing Nanoparticles For The Treatment Of Chrionic Biofilm Infections In Cystic Fibrosis, Leisha M. A. Martin Apr 2019

Iron-Containing Nanoparticles For The Treatment Of Chrionic Biofilm Infections In Cystic Fibrosis, Leisha M. A. Martin

Nanoscience and Microsystems ETDs

Cystic fibrosis (CF) is the most common genetic disease resulting in the morbidity and mortality of Caucasian children and adults worldwide. Due to a genetic mutation resulting in malfunction of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein, CF patients produce highly viscous mucus in their respiratory tract. This leads to impairment of the mucociliary clearance of inhaled microbes. In addition to reduced microbial clearance, anoxic environmental conditions in the lungs promote biofilm-mode growth of the pathogenic bacterial species Pseudomonas aeruginosa. Chronic infections of P. aeruginosa begin in early childhood and typically persist until respiratory failure and death result. The ...


The Effect Of Defects And Surface Modification On Biomolecular Assembly And Transport, Haneen Martinez Mar 2019

The Effect Of Defects And Surface Modification On Biomolecular Assembly And Transport, Haneen Martinez

Nanoscience and Microsystems ETDs

Nanoscale transport using the kinesin-microtubule (MT) biomolecular system has been successfully used in a wide range of nanotechnological applications including self-assembly, nanofluidic transport, and biosensing. Most of these applications use the ‘gliding motility geometry’, in which surface-adhered kinesin motors attach and propel MT filaments across the surface, a process driven by ATP hydrolysis. It has been demonstrated that active assembly facilitated by these biomolecular motors results in complex, non-equilibrium nanostructures currently unattainable through conventional self-assembly methods. In particular, MTs functionalized with biotin assemble into rings and spools upon introduction of streptavidin and/or streptavidin-coated nanoparticles. Upon closer examination of these ...


Engineering Magnetic Properties Of Nanoparticles For Biomedical Applications And Magnetic Thin Film Composite Heterostructures For Device Applications., Shivakumar Hunagund Jan 2019

Engineering Magnetic Properties Of Nanoparticles For Biomedical Applications And Magnetic Thin Film Composite Heterostructures For Device Applications., Shivakumar Hunagund

Theses and Dissertations

The motivation of this study is to investigate the size dependent properties of Gadolinium silicide nanoparticles and their potential applications in Biomedicine. We use two approaches in our investigation - size dependence and possible exchange interaction in a core-shell structure. Past results showed Gd5Si4 NPs exhibit significantly reduced echo time compared to superparamagnetic iron oxide nanoparticles (SPION) when measured in a 7 T magnetic resonance imaging (MRI) system. This indicates potential use of Gd5Si4 ferromagnetic nanoparticles as T2 contrast agents for MRI.

Until recently most contrast agents (CA) that are used in Magnetic Resonance Imaging ...


Nanoharvesting And Delivery Of Bioactive Materials Using Engineered Silica Nanoparticles, Md Arif Khan Jan 2019

Nanoharvesting And Delivery Of Bioactive Materials Using Engineered Silica Nanoparticles, Md Arif Khan

Theses and Dissertations--Chemical and Materials Engineering

Mesoporous silica nanoparticles (MSNPs) possess large surface areas and ample pore space that can be readily modified with specific functional groups for targeted binding of bioactive materials to be transported through cellular barriers. Engineered silica nanoparticles (ESNP) have been used extensively to deliver bio-active materials to target intracellular sites, including as non-viral vectors for nucleic acid (DNA/RNA) delivery such as for siRNA induced interference. The reverse process guided by the same principles is called “nanoharvesting”, where valuable biomolecules are carried out and separated from living and functioning organisms using nano-carriers. This dissertation focuses on ESNP design principles for both ...


Top-Down And Bottom-Up Fabrication Of Key Components In Miniature Energy Storage Devices, Wenhao Li Jan 2019

Top-Down And Bottom-Up Fabrication Of Key Components In Miniature Energy Storage Devices, Wenhao Li

Doctoral Dissertations

The advent of miniature electronic devices demands power sources of commensurate form factors. This spurs the research of micro energy storage devices, e.g., 3D microbatteries. A 3D microbattery contains nonplanar microelectrodes with high aspect ratio and high surface area, separated by a nanoscale electrolyte. The device takes up a total volume as small as 10 mm3, allowing it to serve on a chip and to provide power in-situ. The marriage of nanotechnology and electrochemical energy storage makes microbattery research a fascinating field with both scientific excitement and application prospect. However, successful fabrication of well-functioned key components and the ...


Development Of Functional Biomaterials Using Protein Building Blocks, Li-Sheng Wang Jan 2019

Development Of Functional Biomaterials Using Protein Building Blocks, Li-Sheng Wang

Doctoral Dissertations

Proteins have intrinsic molecular properties that are highly useful for materials applications, especially for biomaterials. My research has focused on translating these molecular properties to materials surface behavior. In one approach, I developed a fluorous-based thermal treatment strategy to generate stable thin films from a variety of naturally abundant proteins. The different surface properties generated from the choice of protein were utilized to modulate cell-surface interactions, prevent bacterial adhesions, and control drug loading/release. I have used nanoimprint lithography to generate patterned protein films for cell alignment. Coupling with inkjet printing deposition, I have fabricated mixed protein films with spatial ...


Tunable Electronic And Optical Properties Of Low-Dimensional Materials, Shiyuan Gao Dec 2018

Tunable Electronic And Optical Properties Of Low-Dimensional Materials, Shiyuan Gao

Arts & Sciences Electronic Theses and Dissertations

Two-dimensional (2D) materials with single or a few atomic layers, such as graphene, hexagonal boron nitride (h-BN) and transition metal dichalcogenides (TMDCs), and the heterostructures or one-dimensional (1D) nanostructures they form, have attracted much attention recently as unique platforms for studying many condensed-matter phenomena and holds great potentials for nanoelectronics and optoelectronic applications. Apart from their unique intrinsic properties which has been intensively studied for over a decade by now, they also allow external control of many degrees of freedom, such as electrical gating, doping and layer stacking. In this thesis, I present a theoretical study of the electronic and ...


Low Temperature Desiccants In Atmospheric Water Generation., Sunil Gupta Dec 2018

Low Temperature Desiccants In Atmospheric Water Generation., Sunil Gupta

Electronic Theses and Dissertations

Surging global water demand as well as changes to weather patterns and over exploitation of natural water sources, such as ground water, has made potable water a critical resource in many parts of the World already – one rapidly heading towards a crisis situation. Desalination has been adopted as a solution – this is however energy intensive and impractical for most of the developing countries - those most in need of water. A renewable source of energy is solar thermal and solar photovoltaic. A plentiful source of water is the humidity in the atmosphere. This research is to push the envelope in pairing ...


Metal Segregation During The Solidification Of Titanium-Aluminum Alloys For 3d Printing Applications, Jwala Parajuli Nov 2018

Metal Segregation During The Solidification Of Titanium-Aluminum Alloys For 3d Printing Applications, Jwala Parajuli

Master's Theses

Titanium-Aluminum alloys are one of the widely used alloys in multiple engineering applications. They are highly preferred in Selective Laser Melting (SLM) processes due to their low density, high melting temperature, and good strength. Segregation occurs during the solidification of most alloys and produces a non-uniform distribution of atoms. In SLM, segregation may depict the type of adhesion between the two deposited interfacial layers and the strength between the interphase between an already solidified layer and a new one, and overall, the quality of the printed part. In order to avoid segregation, the understanding of the segregation behavior at atomistic ...


Electrical Characterization Of Graphene And Nanodiamond Nanostructures, A Z M Nowzesh Hasan Nov 2018

Electrical Characterization Of Graphene And Nanodiamond Nanostructures, A Z M Nowzesh Hasan

Doctoral Dissertations

The electrical characterization on two-dimensional carbon-based graphene and nanodiamond materials was performed to improve charge transport properties for the label-free electrical biosensors. The charge transport in solution-gated graphene devices is affected by the impurities and disorders of the underlying dielectric interface and its interaction with the electrolytes. Advancement in field-effect ion sensing by introducing a dielectric isomorph, hexagonal boron nitride between graphene and silicon dioxide of a solution-gated graphene field-effect transistor was investigated. Increased transconductance due to increased charge carrier mobility is accompanied with larger ionic sensitivity. These findings define a standard to construct future graphene devices for biosensing and ...


Nanoparticle Catalytic Enhancement Of Carbon Dioxide Reforming Of Methane For Hydrogen Production, Nicholas Groden Nov 2018

Nanoparticle Catalytic Enhancement Of Carbon Dioxide Reforming Of Methane For Hydrogen Production, Nicholas Groden

Doctoral Dissertations

The U.S. produces 5559.6 million metric tons of carbon dioxide annually, of which 21% is produced by industrial processes. Steam reforming, an industrial process that accounts for 95% of all hydrogen production in industry, produces 134.5 million metric tons of carbon dioxide or around 11% of the total carbon dioxide produced by industry. This carbon dioxide is then either emitted or goes through a sequestration process that accounts for 75% of the plant's operational costs. An alternative reaction to steam reforming is dry reforming, which utilizes carbon dioxide rather than emitting it and can be used ...


Characterization Of Nanomaterials For Thermal Management Of Electronics, Amit Rai Nov 2018

Characterization Of Nanomaterials For Thermal Management Of Electronics, Amit Rai

Doctoral Dissertations

Recently, there has been a growing interest in flexible electronic devices as they are light, highly flexible, robust, and use less expensive substrate materials. Such devices are affected by thermal management issues that can reduce the device’s performance and reliability. Therefore, this work is focused on the study of the thermal properties of nanomaterials and the methods to address such issues. The goal is to enhance the effective thermal conductivity by adding nanomaterials to the polymer matrix or by structural modification of nanomaterials. The thermal conductivity of copper nanowire/polydimethylsiloxane and copper nanowire/polyurethane composites were measured and showed ...


Novel Design And Synthesis Of Composite Nanomaterials For Lithium And Multivalent Ion Batteries, Wangwang Xu Nov 2018

Novel Design And Synthesis Of Composite Nanomaterials For Lithium And Multivalent Ion Batteries, Wangwang Xu

LSU Doctoral Dissertations

Nowadays, the fast-increasing energy demand for efficient, sustainable and environmentally-friendly energy storage devices remains a significant and challenging issue. Lithium ion batteries (LIBs) have been widely used as commercial energy devices in portable electronics and also shown great promise in upcoming large-scale applications due to their advantages of environmental safety, efficiency in energy delivering and light weight. However, due to their limited capacity, energy densities and cycle ability, LIBs still need further improvement to expand their applications to a larger field, especially electric vehicle (EVs) and hybrid electric vehicles (HEVs), in which energy storage devices with large capacity and high ...


Investigations On Hydrothermally Synthesized Co3o4/Mnxco3-Xo4 Core-Shell Nanoparticles, Ning Bian Aug 2018

Investigations On Hydrothermally Synthesized Co3o4/Mnxco3-Xo4 Core-Shell Nanoparticles, Ning Bian

MSU Graduate Theses

Two different morphologies (pseudo-spherical shaped or PS type and hexagonal nanoplate shaped or NP type) and two different concentrations (0.07 M and 0.1 M) of manganese incorporated Co3O4@MnxCo3-xO4 core-shell nanoparticles (CSNs) were investigated, respectively. The motivation of this work is to investigate the magnetic properties of, and specifically the exchange bias, between different shaped CSNs and between different Mn-doped CSNs. A two-step synthesis method was utilized to obtain the CSNs: a soft chemical approach was used to obtain Co3O4 nanoparticles and a hydrothermal nano-phase epitaxy was ...


Tissue-Engineered Vascular Grafts: Recellularisation And Surface Functionalisation With Hybrid Magnetic Nanomedicine Developed With Theranostic Potential, Tatiane Eufrásio Da Silva Jul 2018

Tissue-Engineered Vascular Grafts: Recellularisation And Surface Functionalisation With Hybrid Magnetic Nanomedicine Developed With Theranostic Potential, Tatiane Eufrásio Da Silva

PhD theses

Cardiovascular Disease is the number one cause of death in the world, with a mortality rate, globally of 35.1% representing 17.6 million lives lost annually. The majority of these deaths are related to vascular diseases, such as atherosclerotic plaques, which can obstruct blood flow perfusion of organs and tissue causing serious injuries or even death. In the heart, in order to prevent heart failure, blood flow to the tissue must be restored as quickly as possible, ideally via minimally invasive interventions such as stenting or other types of angioplasty as the gold standard. However, this is not always ...


Soft-Microrobotics: The Manipulation Of Alginate Artificial Cells, Samuel Sheckman May 2018

Soft-Microrobotics: The Manipulation Of Alginate Artificial Cells, Samuel Sheckman

Mechanical Engineering Research Theses and Dissertations

In this work, the approach to the manipulation of alginate artificial cell soft-microrobots, both individually and in swarms is shown. Fabrication of these artificial cells were completed through centrifugation, producing large volumes of artificial cells, encapsulated with superparamagnetic iron oxide nanoparticles; these artificial cells can be then externally stimulated by an applied magnetic field. The construction of a Permeant Magnet Stage (PMS) was produced to manipulate the artificial cells individually and in swarms. The stage functionalizes the permanent magnet in the 2D xy-plane. Once the PMS was completed, Parallel self-assembly (Object Particle Computation) using swarms of artificial cells in complex ...


Voltage-Controlled Deposition Of Nanoparticles For Next Generation Electronic Materials, Subhodip Maulik May 2018

Voltage-Controlled Deposition Of Nanoparticles For Next Generation Electronic Materials, Subhodip Maulik

LSU Doctoral Dissertations

This work presents both a feasibility study and an investigation into the voltage-controlled spray deposition of different nanoparticles, namely, carbon nanotubes (CNTs), as well as molybdenum disulfide (MoS2) and tungsten disulfide (WS2) from the transition metal dichalcogenides (TMDCs) family of materials. The study considers five different types of substrates as per their potential application to next-generation device electronics. The substrates selected for this research were: 1) aluminum as a conducting substrate, 2) silicon as a semiconducting substrate, 3) glass, silicon dioxide (SiO2), and syndiotactic poly methyl methacrylate (syndiotactic PMMA) as insulating substrates.

Since the 1990’s, carbon ...


Glucose Level Estimation Based On Invasive Electrochemical, And Non-Invasive Optical Sensing Methods, Sanghamitra Mandal May 2018

Glucose Level Estimation Based On Invasive Electrochemical, And Non-Invasive Optical Sensing Methods, Sanghamitra Mandal

Theses and Dissertations

The purpose of this research is to design and fabricate sensors for glucose detection using inexpensive approaches. My first research approach is the fabrication of an amperometric electrochemical glucose sensor, by exploiting the optical properties of semiconductors and structural properties of nanostructures, to enhance the sensor sensitivity and response time. Enzymatic electrochemical sensors are fabricated using two different mechanisms: (1) the low-temperature hydrothermal synthesis of zinc oxide nanorods, and (2) the rapid metal-assisted chemical etching of silicon (Si) to synthesize Si nanowires. The concept of gold nano-electrode ensembles is then employed to the sensors in order to boost the current ...


Design, Fabrication, And Characterization Of All-Inorganic Quantum Dot Light Emitting Diodes, Ramesh Vasan May 2018

Design, Fabrication, And Characterization Of All-Inorganic Quantum Dot Light Emitting Diodes, Ramesh Vasan

Theses and Dissertations

Quantum dot light emitting diodes are investigated as a replacement to the existing organic light emitting diodes that are commonly used for thin film lighting and display applications. In this, all-inorganic quantum dot light emitting diodes with inorganic quantum dot emissive layer and inorganic charge transport layers are designed, fabricated, and characterized. Inorganic materials are more environmentally stable and can handle higher current densities than organic materials. The device consists of CdSe/ZnS alloyed core/shell quantum dots as the emissive layer and metal oxide charge transport layer. The charge transport in these devices is found to occur through resonant ...


Investigation Of Nanomaterial Based Photovoltaic Panel Packaging Materials, Xingeng Yang May 2018

Investigation Of Nanomaterial Based Photovoltaic Panel Packaging Materials, Xingeng Yang

Theses and Dissertations

In this research, nanomaterial-based packaging materials for photovoltaic (PV) panels are investigated. A hydrophobic/anti-reflective surface coating which not only repels water from the top glass of a PV panel but at the same time reduces its light reflectance is investigated. COMSOL simulation results indicate that taller ellipsoid rod (aspect ratio = 5) reflects less light than shorter rod (aspect ratio = 0.5) in the desired spectrum for solar energy harvest from 400nm-700nm. The addition of a polymer layer on these ellipsoid rods broadens the light incident angle from 23° to 34°, from which light can be efficiently absorbed. Based on ...


Self-Assembled Barium Titanate Nanoscale Films By Molecular Beam Epitaxy, Timothy Allen Morgan May 2018

Self-Assembled Barium Titanate Nanoscale Films By Molecular Beam Epitaxy, Timothy Allen Morgan

Theses and Dissertations

One challenge of investigating ferroelectrics at the nanoscale has been controlling the stoichiometry during growth. Historically, the growth of barium titanate (BaTiO3) by molecular beam epitaxy has relied on a growth technique called shuttered RHEED. Shuttered RHEED controls the stoichiometry of barium titanate through the precise deposition of alternating layers of BaO and TiO2. While this approach has achieved 1% control of stoichiometry, finding self-limiting mechanisms to lock-in stoichiometry has been the focus of the growth community. The Goldschmidt tolerance factor predicts an unstable perovskite when barium sits in the titanium lattice site. The BaO-TiO2 phase diagram predicts a low-solubility ...


Novel Solar Cells Based On Two-Dimensional Nanomaterials And Recycled Lead Components, Xiaoru Guo May 2018

Novel Solar Cells Based On Two-Dimensional Nanomaterials And Recycled Lead Components, Xiaoru Guo

Theses and Dissertations

To meet the rapidly growing demand for energy and reduce the use of dwindling fossil fuels, the efficient utilization of renewable energy is a constant pursuit globally. Because solar cells convert vastly available sunlight into electricity, developing high-performance and low-cost solar cells is a top strategy for future energy supply. Dye-sensitized solar cells (DSSCs) and perovskite solar cells (PSCs) are the most promising choices. In the meantime, highly concentrated sulfuric acids from retired lead-acid batteries become an environmental concern, and lead contamination in drinking water raises concerns in general public. This study addresses both above-mentioned problems by using two-dimensional (2D ...


Mesoscale Computational Studies Of Thin-Film Bijels, Joseph M. Carmack May 2018

Mesoscale Computational Studies Of Thin-Film Bijels, Joseph M. Carmack

Theses and Dissertations

Bijels are a relatively new class of soft materials that have many potential applications in the technology areas of energy, medicine, and environmental sustainability. They are formed by the arrest of binary liquid spinodal decomposition by a dispersion of solid colloidal nanoparticles. This dissertation presents an in-depth simulation study of Bijels constrained to thin-film geometries and in the presence of electric fields. We validate the computational model by comparing simulation results with previous computational modeling and experimental research. In the absence of suspended particles, we demonstrate that the model accurately captures the rich kinetics associated with diffusion-based surface-directed spinodal decomposition ...


Phase Transitions In Monochalcogenide Monolayers, Mehrshad Mehboudi May 2018

Phase Transitions In Monochalcogenide Monolayers, Mehrshad Mehboudi

Theses and Dissertations

Since discovery of graphene in 2004 as a truly one-atom-thick material with extraordinary mechanical and electronic properties, researchers successfully predicted and synthesized many other two-dimensional materials such as transition metal dichalcogenides (TMDCs) and monochalcogenide monolayers (MMs). Graphene has a non-degenerate structural ground state that is key to its stability at room temperature. However, group IV monochalcogenides such as monolayers of SnSe, and GeSe have a fourfold degenerate ground state. This degeneracy in ground state can lead to structural instability, disorder, and phase transition in finite temperature. The energy that is required to overcome from one degenerate ground state to another ...


Surface Area And Electrocatalytic Properties Of Feni Nanoparticles For The Oxygen Evolution Reaction (Oer), James Burrow May 2018

Surface Area And Electrocatalytic Properties Of Feni Nanoparticles For The Oxygen Evolution Reaction (Oer), James Burrow

Chemical Engineering Undergraduate Honors Theses

Iron-nickel bimetallic electrocatalysts have recently emerged as some of the best candidates for the oxygen evolution reaction (OER) in alkaline electrolyte. Understanding the effects of composition and morphology of iron-nickel nanoparticles is crucial for optimization and enhanced electrocatalyst performance. Both physical surface area and electrochemical surface area (ECSA) are functions of morphology. In this study, four different iron-nickel nanoparticle catalysts were synthesized. The catalysts were varied based on morphology (alloy versus core-shell) and composition (low, medium, and high stabilizer concentration). Brunauer-Emmett-Teller (BET) surface area analysis was conducted on three of the synthesized iron-nickel nanoparticles using a physisorption analyzer while electrochemical ...


From Flasks To Applications: Design And Optimization Of Giant Quantum Dots Using Traditional And Automated Synthetic Methods, Christina J. Hanson Apr 2018

From Flasks To Applications: Design And Optimization Of Giant Quantum Dots Using Traditional And Automated Synthetic Methods, Christina J. Hanson

Nanoscience and Microsystems ETDs

Semiconducting nanocrystals, also known as quantum dots (QDs), that emit light with near-unity quantum yield and are extremely photostable are attractive options as down-conversion and direct electricity-to-light materials for a variety of applications including solid-state lighting, display technologies, bio-imaging and optical tracking. Standard QDs with a core/thin shell structure display fluorescence intermittency (blinking) and photobleaching when exposed to prolonged room temperature excitation for single dot measurements, as well as significant reabsorption and energy transfer when densely packed into polymers or at high solution concentrations.

We have developed thick shell “giant” QDs (gQDs), ultra-stable photon sources both at the ensemble ...