Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Chemical Engineering

Institution
Keyword
Publication Year
Publication

Articles 121 - 147 of 147

Full-Text Articles in Nanoscience and Nanotechnology

Study And Development Of Sulfated Zirconia Based Proton Exchange Fuel Cell Membranes, Brittany Wilson Kemp Apr 2014

Study And Development Of Sulfated Zirconia Based Proton Exchange Fuel Cell Membranes, Brittany Wilson Kemp

Doctoral Dissertations

With the increasing consumption of energy, fuel cells are among the most promising alternatives to fossil fuels, provided some technical challenges are overcome. Proton exchange membrane fuel cells (PEMFCs) have been investigated and improvements have been made, but the problem with Nafion®, the main membrane for PEMFCs, has not been solved. Nafion® restricts the membranes from operating at higher temperatures, thus preventing them from working in small electronics. The problem is to develop a novel fuel cell membrane that performs comparably to Nafion® in PEMFCs.

The membranes were fabricated by applying sulfated zirconia, via template wetting, to porous alumina membranes. …


Magnetic Janus Particles And Their Applications, Bin Ren Feb 2014

Magnetic Janus Particles And Their Applications, Bin Ren

Dissertations, Theses, and Capstone Projects

Magnetic properties are important since they enable the manipulation of particle behavior remotely and therefore provide the means to direct a particle’s orientation and translation. Magnetic Janus particles combine magnetic properties with anisotropy and thus are potential building blocks for complex structures that can be assembled from a particle suspension and can be directed through external fields. In this thesis, a method for the fabrication of three types of magnetic Janus particles with distinct magnetic properties is introduced, the assembly behavior of magnetic Janus particles in external magnetic and electric fields is systematically studied, and two potential applications of magnetic …


Adsorption And Diffusion Of Gases In Nano-Porous Materials, Nethika Sahani Suraweera Dec 2013

Adsorption And Diffusion Of Gases In Nano-Porous Materials, Nethika Sahani Suraweera

Doctoral Dissertations

In this work, a systematic computational study directed toward developing a molecular-level understanding of gas adsorption and diffusion characteristics in nano-porous materials is presented. Two different types of porous adsorbents were studied, one crystalline and the other amorphous. Physisorption and diffusion of hydrogen in ten iso-reticular metal-organic frameworks (IRMOFs) were investigated. A set of nine adsorbents taken from a class of novel, amorphous nano-porous materials composed of spherosilicate building blocks and isolated metal sites was also studied, with attention paid to the adsorptive and diffusive behavior of hydrogen, methane, carbon dioxide and their binary mixtures. Both classes of materials were …


Structure And Energetics Of Nanoparticles And Ionomer Films In Fuel Cell Catalyst Layers, Qianping He Dec 2013

Structure And Energetics Of Nanoparticles And Ionomer Films In Fuel Cell Catalyst Layers, Qianping He

Doctoral Dissertations

Improving the durability and utilization efficiency of the platinum-on-carbon (Pt/C) catalyst is of vital importance to the commercialization of the polymer electrolyte membrane fuel cell (PEMFC). This body of work provides molecular level insights to aid the fulfillment of this goal. Chapter 1 describes the use of molecular dynamics (MD) simulation in an effort to understand the Pt/C degradation issue from the nano-adhesion point of view. The roles of catalyst nanoparticle size, shape, Pt/C surface oxidation and the extent of ionomer film hydration are investigated to study their effects on nano-particle adhesion. It is found that the adhesion force strengthens …


Bending, Wrinkling, And Folding Of Thin Polymer Film/Elastomer Interfaces, Yuri Ebata Sep 2013

Bending, Wrinkling, And Folding Of Thin Polymer Film/Elastomer Interfaces, Yuri Ebata

Open Access Dissertations

This work focuses on understanding the buckling deformation mechanisms of bending, wrinkling, and folding that occur on the surfaces and interfaces of polymer systems. We gained fundamental insight into the formation mechanism of these buckled structures for thin glassy films placed on an elastomeric substrate. By taking advantage of geometric confinement, we demonstrated new strategies in controlling wrinkling morphologies. We were able to achieve surfaces with controlled patterned structures which will have a broad impact in optical, adhesive, microelectronics, and microfluidics applications.

Wrinkles and strain localized features, such as delaminations and folds, are observed in many natural systems and are …


Discriminatory Bio-Adhesion Over Nano-Patterned Polymer Brushes, Saugata Gon Sep 2013

Discriminatory Bio-Adhesion Over Nano-Patterned Polymer Brushes, Saugata Gon

Open Access Dissertations

Surfaces functionalized with bio-molecular targeting agents are conventionally used for highly-specific protein and cell adhesion. This thesis explores an alternative approach: Small non-biological adhesive elements are placed on a surface randomly, with the rest of the surface rendered repulsive towards biomolecules and cells. While the adhesive elements themselves, for instance in solution, typically exhibit no selectivity for various compounds within an analyte suspension, selective adhesion of targeted objects or molecules results from their placement on the repulsive surface. The mechanism of selectivity relies on recognition of length scales of the surface distribution of adhesive elements relative to species in the …


The Critical Role Of Mechanism-Based Models For Understanding And Predicting Liposomal Drug Loading, Binding And Release Kinetics, Sweta Modi Jan 2013

The Critical Role Of Mechanism-Based Models For Understanding And Predicting Liposomal Drug Loading, Binding And Release Kinetics, Sweta Modi

Theses and Dissertations--Pharmacy

Liposomal delivery systems hold considerable promise for improvement of cancer therapy provided that critical formulation design criteria can be met. The main objective of the current project was to enable quality by design in the formulation of liposomal delivery systems by developing comprehensive, mechanism-based mathematical models of drug loading, binding and release kinetics that take into account not only the therapeutic requirement but the physicochemical properties of the drug, the bilayer membrane, and the intraliposomal microenvironment.

Membrane binding of the drug affects both drug loading and release from liposomes. The influence of bilayer composition and phase structure on the partitioning …


Multi-Scale Characterization Of Nanostructured Sodium Aluminum Hydride, Shathabish Narasegowda Jan 2013

Multi-Scale Characterization Of Nanostructured Sodium Aluminum Hydride, Shathabish Narasegowda

Doctoral Dissertations

Complex metal hydrides are the most promising candidate materials for onboard hydrogen storage. The practicality of this class of materials is counter-poised on three critical attributes: reversible hydrogen storage capacity, high hydrogen uptake/release kinetics, and favorable hydrogen uptake/release thermodynamics. While a majority of modern metallic hydrides that are being considered are those that meet the criteria of high theoretical storage capacity, the challenges lie in addressing poor kinetics, thermodynamics, and reversibility. One emerging strategy to resolve these issues is via nanostructuring or nano-confinement of complex hydrides. By down-sizing and scaffolding them to retain their nano-dimensions, these materials are expected to …


Application And Characterization Of Self-Assembled Monolayers In Hybrid Electronic Systems, Michael Enoch Celesin Jan 2013

Application And Characterization Of Self-Assembled Monolayers In Hybrid Electronic Systems, Michael Enoch Celesin

USF Tampa Graduate Theses and Dissertations

In this study, we explore ultra-thin insulators of organic and inorganic composition and their potential role as high-speed rectifiers. Typical applications for these structures include IR sensing, chemical detection, high speed logic circuits, and MEMS enhancements. While there are many elements in the functional group required to create a rectifying antenna (rectenna), the primary thrust of this work is on the rectifier element itself.

To achieve these research goals, a very good understanding of quantum tunneling was required to model the underlying phenomenon of charge conduction. The development of a multi-variable optimization routine for tunneling prediction was required. MATLAB was …


Properties Of Peg, Ppg And Their Copolymers Influence On The Gap-Fill Characteristics Of Damascene Interconnects, Kevin Ryan Jan 2013

Properties Of Peg, Ppg And Their Copolymers Influence On The Gap-Fill Characteristics Of Damascene Interconnects, Kevin Ryan

Legacy Theses & Dissertations (2009 - 2024)

A laboratory scale plating cell was built that provided reproducible bottom-up fill results for the electrochemical deposition of copper in damascene features. Several techniques used in the full wafer plating tool were incorporated into the setup to accurately control the process conditions. These techniques included but were not limited to a voltage controlled `hot-entry' step, a custom coupon holder to allow sample rotation, a secondary thief electrode and an automatic entry system. The results of qualification experiments are presented to demonstrate that precise control was realized along with repeatable partial fill plating results. The qualified setup was then used to …


Modeling, Fabrication And Characterization Of Scalable Electroless Gold Plated Nanostructures For Enhanced Surface Plasmon Resonance, Gyoung Gug Jang Dec 2012

Modeling, Fabrication And Characterization Of Scalable Electroless Gold Plated Nanostructures For Enhanced Surface Plasmon Resonance, Gyoung Gug Jang

Graduate Theses and Dissertations

The scientific and industrial demand for controllable thin gold (Au) film and Au nanostructures is increasing in many fields including opto-electronics, photovoltaics, MEMS devices, diagnostics, bio-molecular sensors, spectro-/microscopic surfaces and probes. In this study, a novel continuous flow electroless (CF-EL) Au plating method is developed to fabricate uniform Au thin films in ambient condition. The enhanced local mass transfer rate and continuous deposition resulting from CF-EL plating improved physical uniformity of deposited Au films and thermally transformed nanoparticles (NPs). Au films and NPs exhibited improved optical photoluminescence (PL) and surface plasmon resonance (SPR), respectively, relative to batch immersion EL (BI-EL) …


Refractive Index Chemical Sensing With Noble Metal Nanoparticles, Phillip Blake Dec 2012

Refractive Index Chemical Sensing With Noble Metal Nanoparticles, Phillip Blake

Graduate Theses and Dissertations

Chemical sensing is a key component in modern society, especially in engineering applications. Because of their widespread impact, improvements to chemical sensors are a significant area of research. One class of sensors, plasmonic sensors, is being heavily researched because of their ability to detect low levels of analyte in near real time without destroying the analyte. This work studies a new class of plasmonic sensor that utilizes diffractive coupling to improve sensor performance. Specifically, this work outlines the first study of diffractive coupling sensors with typical nanoparticle shapes. Sensitivity of this new class of sensor is directly compared to typical …


Peptoid Based Slide Coatings For Disease Detection Via Elisa Microarray Analysis, Melissa Lea Hebert Aug 2012

Peptoid Based Slide Coatings For Disease Detection Via Elisa Microarray Analysis, Melissa Lea Hebert

Graduate Theses and Dissertations

Poly-N-substituted glycines (peptoids) are a very versatile family of synthetic molecules that can be customized for any number of applications. In this study, we chose to use peptoids as a foundation for sandwich ELISA microarray analysis with a long term goal of creating an early detection device for complex diseases such as cancer. The peptoids were designed to self-assemble into microspheres to be used in coatings on the surface of the microarray substrates to increase the surface area available for antibody attachment. This increased antibody density would lead to an increase in the microarray analysis sensitivity and dynamic range. Studies …


Plasmonic Pervaporation Via Gold Nanoparticle-Functionalized Nanocomposite Membranes, Aaron Russell Aug 2012

Plasmonic Pervaporation Via Gold Nanoparticle-Functionalized Nanocomposite Membranes, Aaron Russell

Graduate Theses and Dissertations

Butanol derived from biological feedstocks has significant potential as a liquid fuel source, but the separation methods used in its production can be prohibitively expensive and are therefore currently the subject of extensive research. Pervaporation is a promising membrane process that is effective in butanol separations, but involves a large energy demand. This study examines the possibility of increasing flux and energy efficiency in pervaporation via plasmonic heating of gold nanoparticle-functionalized, polymer nanocomposite membranes (AuNCMs) in lieu of conventional feed heating. An economic analysis demonstrated that plasmonic pervaporation could achieve significant reductions in energy usage and utility cost in butanol …


Nanoparticle Additives For Multiphase Systems: Synthesis, Formulation And Characterization, Vinod Kanniah Jan 2012

Nanoparticle Additives For Multiphase Systems: Synthesis, Formulation And Characterization, Vinod Kanniah

Theses and Dissertations--Chemical and Materials Engineering

Study on nanoparticle additives in multiphase systems (liquid, polymer) are of immense interest in developing new product applications. Critical challenges for nanoparticle additives include their synthesis, formulation and characterization. These challenges are addressed in three application areas: nanofluids for engine lubrication, ultrathin nanocomposites for optical devices, and nanoparticle size distribution characterization.

Nanoparticle additives in oligomer mixtures can be used to develop extended temperature range motor oils. A model system includes poly(α-olefin) based oligomers with a modest fraction of poly(dimethylsiloxane) oligomers along with graphite as nanoparticle additive. Partition coefficients of each oligomer are determined since the oligomer mixture phase separated at …


Polymeric Nanocarriers For The Regional And Systemic Delivery Of Therapeutics To And Through The Lungs, Balaji Bharatwaj Jan 2012

Polymeric Nanocarriers For The Regional And Systemic Delivery Of Therapeutics To And Through The Lungs, Balaji Bharatwaj

Wayne State University Dissertations

The lungs are considered as one of the fastest portals of entry to the bloodstream and oral inhalation (OI) has long been accepted as the preferred mode of administration of therapeutics to the respiratory tract. However, despite its advantages, the lungs have been largely underutilized to target ailments not only of systemic relevance but also several other grave conditions including lung cancer and tuberculosis. Polymeric nanocarriers (PNCs) have several advantages over other drug delivery vehicles including sustained release of moieties, ease of cellular internalization and improved targeting, and hence hold the promise to greatly augment the potential of OI therapies. …


Role Of Ammonia In The Activiation Of Methanol Dehydrogenase/Cytochrome C(L) Enzyme, Ancy Kunjumon Oct 2011

Role Of Ammonia In The Activiation Of Methanol Dehydrogenase/Cytochrome C(L) Enzyme, Ancy Kunjumon

Doctoral Dissertations

Recent advancement in enzyme catalysis has opened ways to design efficient biocatalysts, bio-sensors and bio-fuel cells. An in-depth knowledge about the mechanism of the reaction taking place within the enzymes is of great importance to achieve these goals. In this dissertation, various computation methods are applied to investigate the mechanism behind enzyme catalysis in the presence of compounds called activators.

Methanol dehydrogenase (MDH) is a well-known bio-catalyst that can oxidize excess of methanol from the environment to formaldehyde. The enzyme works well within the bacterial environment, but under in vitro, it loses activity. Ammonia is used as an activator …


Electrochemical Synthesis Of Single Crystal Metal Nanowires, Nan Li Aug 2011

Electrochemical Synthesis Of Single Crystal Metal Nanowires, Nan Li

Master's Theses

Electrodeposition is an efficient and economical approach for template synthesis of one-dimensional (1D) nanostructured materials. Based on the porous membranes as templates during electrodeposition, metallic nanowires, nanorods, and nanotubes can overcome the geometrical restrictions to be inserted into the nanometric recesses with both diameter and length well controlled by tuning the size and thickness of the templates.

In this work, the morphology, growth rate and texture of copper nanowires prepared with templates were investigated by the controlled parameters in various experiments. Cu nanowire arrays with preferential orientations can be successfully synthesized into the Anodic Aluminum Oxide (AAO) templates with optimized …


The Design And Manufacture Of A Microfluidic Reactor For Synthesis Of Cadmium Selenide Quantum Dots Using Silicon And Glass Substrates, Peter Gonsalves Jun 2011

The Design And Manufacture Of A Microfluidic Reactor For Synthesis Of Cadmium Selenide Quantum Dots Using Silicon And Glass Substrates, Peter Gonsalves

Materials Engineering

A microfluidic reactor for synthesizing cadmium selenide (CdSe) quantum dots (QDs) was synthesized out of silicon and Pyrex glass. Microfabrication techniques were used to etch the channels into the silicon wafer. Holes were wet-drilled into Pyrex glass using a diamond-tip drill bit. The Pyrex wafer was aligned to the etched silicon wafer and both were anodically bonded to complete the microfluidic reactor. Conditions for anodic bonding were created by exposing the stacked substrates to 300V at ~350oC under 5.46N of force. Bulk CdSe solution was mixed at room temperature and treated as a single injection. The syringe containing …


Self-Assembling Organic Semiconductors With Tunable Electronic Properties Based On Novel Asymmetric Phenazine And Bisphenazine, Kyoungmi Jang May 2011

Self-Assembling Organic Semiconductors With Tunable Electronic Properties Based On Novel Asymmetric Phenazine And Bisphenazine, Kyoungmi Jang

UNLV Theses, Dissertations, Professional Papers, and Capstones

Current demands in the area of organic semiconductors focus on both electronic and self-assembling properties. Particularly, one-dimensionally grown nanostructures of small organic semiconductors have drawn much attention for nanodevice fabrication. Self-assembly through various intermolecular interactions has been widely used to produce one-dimensionally grown nanostructures which can be induced by various methods such as rapid solution dispersion, a phase transfer method, vapor annealing, crystallization, and organogelation in conjunction with proper molecular design. Controlling the morphology of the nanostructures plays an important role in achieving desirable properties in optoelectronic device applications. While significant advancements have been made in developing molecular architectures for …


Halloysite Clay Nanotubes For Controlled Delivery Of Chemically Active Agents, Elshard Abdullayev Oct 2010

Halloysite Clay Nanotubes For Controlled Delivery Of Chemically Active Agents, Elshard Abdullayev

Doctoral Dissertations

In this work we explored the capabilities of halloysite nanotubes as capsules for encapsulation and controlled delivery of the chemically and biologically active substances. Halloysite is a two-layered aluminosilicate which has a predominantly hollow tubular structure in the submicron range and is chemically similar to kaolinite [1, 2].

In the first section of this work, we analyzed the structure of the halloysite nanotubes as well as its capability to encapsulate and deliver biologically and chemically active agents, similarities and differences between release characteristics of different agents and how these differences relate with their chemical structure. Models were used to describe …


Molecular Simulations Of Adsorption And Diffusion In Metal-Organic Frameworks (Mofs), Ruichang Xiong May 2010

Molecular Simulations Of Adsorption And Diffusion In Metal-Organic Frameworks (Mofs), Ruichang Xiong

Doctoral Dissertations

Metal-organic frameworks (MOFs) are a new class of nanoporous materials that have received great interest since they were first synthesized in the late 1990s. Practical applications of MOFs are continuously being discovered as a better understanding of the properties of materials adsorbed within the nanopores of MOFs emerges. One such potential application is as a component of an explosive-sensing system. Another potential application is for hydrogen storage.

This work is focused on tailoring MOFs to adsorb/desorb the explosive, RDX. Classical grand canonical Monte Carlo (GCMC) and molecular dynamic (MD) simulations have been performed to calculate adsorption isotherms and self-diffusivities of …


Analysis Of Conjugated Polymer Nanotubules Formed By Template Wetting Nanofabrication, Steven D. Bearden Jr. Apr 2010

Analysis Of Conjugated Polymer Nanotubules Formed By Template Wetting Nanofabrication, Steven D. Bearden Jr.

Doctoral Dissertations

Semiconducting and optoelectric conjugated polymers have potential in micro and nano-electronic applications. Their widely tunable physical conformations and orientations make these polymers ideal material for engineering small scale devices. The polymers have been incorporated into several electronic devices including light-emitting diodes, solar cells, and field-effect transistors. Widespread adoption of these materials will not be a reality until the issues of poor device performance, short lifespans, and device degradation are resolved.

Nanostructures have been demonstrated to have improvements in molecular ordering and electronic transport. In the work presented here, tubular nanostructures of conjugated polymers fabricated by the template wetting nanofabrication process …


Supercritical Carbon Dioxide Processing Of Nano - Clays And Polymer/Clay Nanocomposites, Mihai Manitiu Jan 2010

Supercritical Carbon Dioxide Processing Of Nano - Clays And Polymer/Clay Nanocomposites, Mihai Manitiu

Wayne State University Dissertations

Effective dispersion of the fillers in a polymer matrix and improvement of polymer-clay interactions are two key challenges in the field of nanocomposites. A novel processing method that utilizes the unique properties of supercritical carbon dioxide (scCO2) to disperse nano-clay and prepare a series of polymer/clay nanocomposites with enhanced properties was explored.

Significant dispersion was achieved using the scCO2 process with Cloisite 10A without the presence of an organic phase as evident by the absence of the diffraction peak in WAXD and the presence of individual tactoids that lost their parallel registry. The expanded flexible structure of the scCO2 processed …


Development Of Wide Band Gap Semiconductor Materials For Renewable Energy, S.M. Sarif Masud Jan 2010

Development Of Wide Band Gap Semiconductor Materials For Renewable Energy, S.M. Sarif Masud

Open Access Theses & Dissertations

Several new wide band gap semiconductor nanocomposite photocatalytic materials have been synthesized from HTiNbO5 and HNb3O8 for solar energy conversion. As a source of renewable energy, the materials are being tested to produce hydrogen fuel from water via photolysis. The materials have high surface areas, are macroporous, and have flatband potentials suitable for reducing water to create hydrogen. Under visible or ultra violet light, the materials were found to be very promising as hydrogen evolving photocatalysts. As part of the synthesis of the composites, the catalysts also exhibited excellent catalytic activity under UV light for reducing ionic platinum and gold …


Design And Development Of Highly Active, Nanoengineered, Platinum Based Core-Shell Electrodes For Proton Exchange Membrane Fuel Cells, Seth Louis Knupp Jan 2010

Design And Development Of Highly Active, Nanoengineered, Platinum Based Core-Shell Electrodes For Proton Exchange Membrane Fuel Cells, Seth Louis Knupp

Legacy Theses & Dissertations (2009 - 2024)

Highly active nanoengineered core-shell electrocatalyst have a great potential to be used as fuel cell electrodes. They can alleviate problems related with commercial carbon supported platinum by simultaneously lowering cost while enhancing reaction kinetics and overall performance. More recently, use of nanoengineered core-shell electrode structures have showed their ability to enhance the stability and overall lifetime of the catalyst without sacrificing the electrode's performance. We studied the potential of using highly active core-shell nanoparticles supported on carbon nanomaterials as fuel cell electrodes.


Nanoscale Functionalization And Characterization Of Surfaces With Hydrogel Patterns And Biomolecules, Hariharasudhan Chirra Dinakar Jan 2010

Nanoscale Functionalization And Characterization Of Surfaces With Hydrogel Patterns And Biomolecules, Hariharasudhan Chirra Dinakar

University of Kentucky Doctoral Dissertations

The advent of numerous tools, ease of techniques, and concepts related to nanotechnology, in combination with functionalization via simple chemistry has made gold important for various biomedical applications. In this dissertation, the development and characterization of planar gold surfaces with responsive hydrogel patterns for rapid point of care sensing and the functionalization of gold nanoparticles for drug delivery are highlighted.

Biomedical micro- and nanoscale devices that are spatially functionalized with intelligent hydrogels are typically fabricated using conventional UV-lithography. Herein, precise 3-D hydrogel patterns made up of temperature responsive crosslinked poly(N-isopropylacrylamide) over gold were synthesized. The XY control of the hydrogel …