Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Chemical Engineering

2021

Articles 1 - 12 of 12

Full-Text Articles in Nanoscience and Nanotechnology

Recombinant Production And Purification Of Green Fluorescent Protein (Gfp)-Fused Metal Binding Protein For Palladium Nanoparticle Synthesis, Shadrach Ibinola Dec 2021

Recombinant Production And Purification Of Green Fluorescent Protein (Gfp)-Fused Metal Binding Protein For Palladium Nanoparticle Synthesis, Shadrach Ibinola

Graduate Theses and Dissertations

In lieu of chemical and physical methods, biologically guided synthesis is increasingly used as a cost-effective medium for the fabrication of nanoparticles (NP). Recently, a palladium metal binding sequence Pd4 (TSNAVHPTLRHL) has been demonstrated to be instrumental in the production of palladium (Pd) nanoparticles. Although, by eliminating the additional cost of purification of the protein, the crude lysate of E. coli containing Pd specific protein has been proven to be a viable cost-effective means for the synthesis of Pd NP, studies have not be done to ascertain the comparative catalytic activity of nanoparticles synthesized from both clarified lysate and pure …


Feedstock Powders For Reactive Structural Materials, Daniel Hastings Aug 2021

Feedstock Powders For Reactive Structural Materials, Daniel Hastings

Dissertations

Metals as fuels have higher energy density per unit mass or volume compared to any hydrocarbon. At the same time, metals are common structural materials. Exploring metals as reactive structural materials may combine their high energy density with attractive mechanical properties. Preparing such materials, however, is challenging. Requirements that need to be met for applications include density, strength, and stability enabling the component to sustain the structure during its desired operation; added requirements are the amount and rate of the energy release upon impact or shock. Powder technology and additive manufacturing are approaches considered for design of reactive structural materials. …


Inherently Porous Atomically Thin Membranes For Gas Separation, Harpreet Atwal Aug 2021

Inherently Porous Atomically Thin Membranes For Gas Separation, Harpreet Atwal

Electronic Thesis and Dissertation Repository

Membranes made from atomically thin materials promise hundreds of times higher production rates than conventional polymer membranes for separation applications. Graphene is impermeable to gases but becomes selectively permeable once pores are introduced into it but creating trillions of nanopores over large areas is difficult. By instead choosing an inherently porous two-dimensional material with naturally identical pores repeated at high density, we may circumvent this challenge. In this work, we explore the potential of two candidate materials, 2D polyphenylene and graphdiyne. We synthesize cyclohexane-m-phenylene, a monomer of 2D polyphenylene. We then develop an atomic force microscopy technique for measuring the …


Rational Design Of Highly Efficient Electrocatalysts Using Atomic Layer Deposition: From Nanoparticle To Single Atom, Junjie Li Aug 2021

Rational Design Of Highly Efficient Electrocatalysts Using Atomic Layer Deposition: From Nanoparticle To Single Atom, Junjie Li

Electronic Thesis and Dissertation Repository

Polymer electrolyte membrane fuel cells (PEMFCs) have been attracted significant attention due to their high energy efficiency. The electrocatalyst is one of the most important parts. However, state-of-the-art electrocatalysts suffer from several challenges, including 1) low stability under harsh working conditions; 2) low atomic utilization efficiency, especially for noble metals. This thesis, therefore, focuses on the design of highly efficient and stable electrocatalysts from nanoparticles down to single atoms using atomic layer deposition (ALD) and further understand the insight mechanisms.

Firstly, Pt nanoparticles are selectively deposited on the TiO2 modified N-doped carbon nanotubes. The strong metal-support interactions between Pt …


Degradation Of Antibiotics In Aqueous Phase Using Pms Catalytic Decomposition With Zero-Valent Iron Nanoparticles Immobilized In Sba-15, Ahdee Bluma Zeidman May 2021

Degradation Of Antibiotics In Aqueous Phase Using Pms Catalytic Decomposition With Zero-Valent Iron Nanoparticles Immobilized In Sba-15, Ahdee Bluma Zeidman

UNLV Theses, Dissertations, Professional Papers, and Capstones

Zero-valent iron nanoparticles (nZVI) have been studied as an option for soil remediation and water treatment for many years. The capability of nZVI to produce oxidation/reduction processes, depending on the reaction conditions, has attracted great interest with their major drawback being reactivity loss through agglomeration. The loss in nZVI surface area has been reported to be prevented through immobilization onto a porous media (e.g., SBA-15, MCM-41, or zeolites). In this work, a mesoporous silica structure (SBA-15) is used as an nZVI supporting material to enhance its reactivity and promote peroxymonosulfate (PMS) catalytic decomposition for the degradation of antibiotics in aqueous …


Peptoid-Functionalized Gold Nanoparticles For Zika Virus Envelope Protein Detection, Meagan Olsen May 2021

Peptoid-Functionalized Gold Nanoparticles For Zika Virus Envelope Protein Detection, Meagan Olsen

Chemical Engineering Undergraduate Honors Theses

Detection and identification of viral pathogens is essential in providing effective and rapid medical treatment. Well-established detection methods can be expensive, slow, and sometimes unable to provide the needed sensitivity and specificity. The Zika virus is one clinically relevant pathogen that cannot be easily identified due to cross-reactivity with other viruses from the same family. Electrochemical sensors enhanced with peptoid-functionalized gold nanoparticles (AuNPs) are an alternative to traditional techniques that offers rapid, accurate, label-free pathogen detection for point-of-care diagnostics. To this end, a peptoid capable of binding to the Zika virus envelope protein was developed and its binding affinity for …


A Systematic Multiscale Investigation Of Nanoparticle-Assisted Co2 Enhanced Oil Recovery (Eor) Process For Shale Oil Reservoirs, Dayo A. Afekare Mar 2021

A Systematic Multiscale Investigation Of Nanoparticle-Assisted Co2 Enhanced Oil Recovery (Eor) Process For Shale Oil Reservoirs, Dayo A. Afekare

LSU Doctoral Dissertations

Shale oil reservoirs are prolific on the short term due to hydraulic fracturing and horizontal drilling but experience significant production decline, leading to poor ultimate recovery and leaving billions of barrels of oil buried in the ground. In this study, a systematic multi-scale investigation of an enhanced oil recovery (EOR) process using relatively inexpensive silicon dioxide nanoparticles and carbon dioxide for shale oil reservoirs was conducted. Using the Tuscaloosa Marine Shale (TMS) as a case study, aqueous dispersions of nanosilica in conjunction with CO2 were investigated at nano-to-core scales. At the nanoscale, atomic force microscope was used to investigate …


Plasmonic Photocatalysis For Gas-Phase Degradation Of Total Volatile Organic Compounds: Theory, Experimentation, And Catalyst Stability, Amaury P. Betancourt Iii Mar 2021

Plasmonic Photocatalysis For Gas-Phase Degradation Of Total Volatile Organic Compounds: Theory, Experimentation, And Catalyst Stability, Amaury P. Betancourt Iii

USF Tampa Graduate Theses and Dissertations

Plasmonic nanomaterials have become a strong contender for improving the efficiency of photocatalytic degradation of air pollutants. This study demonstrates an easy and scalable fabrication method, employing electron beam evaporation and rapid thermal annealing, for producing plasmonic photocatalysts. Samples were made by either coating silver on, or layering silica-protected (i.e., silica-coated) or unprotected (i.e., uncoated) silver beneath, the photocatalyst (either zinc oxide or titanium dioxide). Stability and catalytic performance for gas-phase toluene degradation was assessed by monitoring total volatile organic compound (TVOC) concentration versus ultraviolet-A (UV-A) illumination time in a recirculating batch reactor (plate-type flow-through). Samples were characterized using a …


Development Of Novel Polymeric Materials For Their Application In Monitoring And Remediation Of Environmental Pollutants, Rishabh Shah Jan 2021

Development Of Novel Polymeric Materials For Their Application In Monitoring And Remediation Of Environmental Pollutants, Rishabh Shah

Theses and Dissertations--Chemical and Materials Engineering

Remediation of environmental pollutants from water is one of the major challenges in the 21st century. Utilizing novel polymeric materials to accomplish this challenge has garnered a lot of interest in recent times. Flexibility in synthesizing as well as functionalizing makes them attractive for their application in pollutant remediation. This work is based on development and characterization of novel crosslinked polymeric as well as linear polymeric materials from biphenyl-based monomers, biphenyl based crosslinker and a temperature responsive monomer (Nisopropylacrylamide (NIPAAm)) for their application in remediation of toxic pollutants such as polychlorinated biphenyls (PCBs), polyaromatic hydrocarbons (PAHs) and iron oxide nanoparticle …


Investigation Of Iron-Nickel Based Nanoparticles As Catalysts For Oxygen Evolution Reaction (Oer), Prashant Acharya Jan 2021

Investigation Of Iron-Nickel Based Nanoparticles As Catalysts For Oxygen Evolution Reaction (Oer), Prashant Acharya

Graduate Theses and Dissertations

Hydrogen fuel is increasingly seen as an appealing alternative by both the scientific and the industrial communities in the drive towards a clean energy future. Hydrogen, unlike fossil-based fuels, does not release carbon dioxide, a chief component of greenhouse gases, upon combustion. However, more than 95% of the hydrogen in the world is still produced by burning fossil fuels as this method is currently the only economically feasible option at a large industrial scale.

Water electrolysis shows a lot of potential in both hydrogen generation and in the storage of energy from renewable sources such as wind and sunlight. Likewise, …


Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand Jan 2021

Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand

Dissertations and Theses

Localized chemical delivery plays an essential role in the fundamental information transfers within biological systems. Thus, the ability to mimic the natural chemical signal modulation would provide significant contributions to understand the functional signaling pathway of biological cells and develop new prosthetic devices for neurological disorders. In this paper, we demonstrate a light-controlled hydrogel platform that can be used for localized chemical delivery in a high spatial resolution. By utilizing the photothermal behavior of graphene-hydrogel composites confined within micron-sized fluidic channels, patterned light illumination creates the parallel and independent actuation of chemical release in a group of fluidic ports. The …


Perovskite Thin Films Annealed In Supercritical Fluids For Efficient Solar Cells, Gilbert Annohene Jan 2021

Perovskite Thin Films Annealed In Supercritical Fluids For Efficient Solar Cells, Gilbert Annohene

Theses and Dissertations

In the field of photovoltaics, scientists and researchers are working fervently to produce a combination of efficient, stable, low cost and scalable devices. Methylammonium lead trihalide perovskite has attracted intense interest due to its high photovoltaic performance, low cost, and ease of manufacture. Their high absorption coefficient, tunable bandgap, low-temperature processing, and abundant elemental constituent provide innumerable advantages over other thin film absorber materials. Since the perovskite film is the most important in the device, morphology, crystallization, compositional and interface engineering have been explored to boost its performance and stability. High temperatures necessary for crystallization of organic-inorganic hybrid perovskite films …