Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

2014

Discipline
Institution
Keyword
Publication
Publication Type

Articles 31 - 60 of 273

Full-Text Articles in Nanoscience and Nanotechnology

Silica Nanoparticles As Vehicles For Therapy Delivery In Neurological Injury, Desiree Schenk Oct 2014

Silica Nanoparticles As Vehicles For Therapy Delivery In Neurological Injury, Desiree Schenk

Open Access Dissertations

Acrolein, a very reactive aldehyde, is a culprit in the biochemical cascade after primary, mechanical spinal cord injury (SCI), which leads to the destruction of tissue initially unharmed, referred to as "secondary injury". Additionally, in models of multiple sclerosis (MS) and some clinical research, acrolein levels are significantly increased. This aldehyde overwhelms the natural anti-oxidant system, reacts freely with proteins, and releases during lipid peroxidation (LPO), effectively regenerating its self. Due to its ability to make more copies of itself in the presence of tissue via lipid peroxidation, researchers believe that acrolein plays a role in the increased destruction of …


Role Of Group Ii Metabotropic Glutamate Receptor Subtype 2 (Mglur2) In Appetitive And Consummatory Aspects Of Ethanol Reinforcement, Kyle Allyson Windisch Oct 2014

Role Of Group Ii Metabotropic Glutamate Receptor Subtype 2 (Mglur2) In Appetitive And Consummatory Aspects Of Ethanol Reinforcement, Kyle Allyson Windisch

Open Access Dissertations

Background: Group II metabotropic glutamate receptors (mGluR2/3) are predominately presynaptically located Gi/o coupled receptors that are highly expressed in the cortex, nucleus accumbens, amygdala, and hippocampus. Previous studies suggest that group II mGluRs are involved in regulating ethanol (EtOH) consumption and seeking following extinction (Backstrom and Hyytia, 2005; Kufahl, et al., 2011). The sipper tube model, which allows for procedural separation of seeking and consumption, was used to further clarify the role of mGluR2/3 in EtOH-seeking and consumption. The non-selective group II mGluR agonist LY379268 (LY37) and selective mGluR2 positive allosteric modulator (PAM) BINA were used to determine the …


Nano-Engineered Polymers In Drug Delivery: Potential Approaches For Attenuation Of Secondary Injury After Spinal Cord Trauma, Wen Gao Oct 2014

Nano-Engineered Polymers In Drug Delivery: Potential Approaches For Attenuation Of Secondary Injury After Spinal Cord Trauma, Wen Gao

Open Access Dissertations

Secondary injury elicits a complex series of pathophysiological events after the primary spinal cord trauma and even after its implantation treatment for neural functional recovery. These secondary injuries include an up-regulation of glial cells associated reactive oxygen species, nitrogen species, and reactive astrogliosis, and they can result in various levels of cellular and tissue damage. The inhibition of them has been proved to lead to functional recovery of the spinal cord. In this study, we concentrated on developing polymers and nano-techniques based drug delivery strategies to eliminate these secondary injuries. ^ To maintain and improve the performance of the implants …


Nano-Modification For High Performance Cement Composites With Cellulose Nanocrystals And Carbon Nanotubes, Yizheng Cao Oct 2014

Nano-Modification For High Performance Cement Composites With Cellulose Nanocrystals And Carbon Nanotubes, Yizheng Cao

Open Access Dissertations

One of the new engineering frontiers is the exploration of infrastructure materials with novel combinations of properties that break traditional paradigms. The goal of this study is to utilize two different nano-fibers, cellulose nanocrystals (CNCs) and carbon nanotubes (CNTs) to modify the nanoscale structures of cement composites and thereby improve the performance at the macro-level. This study also evaluates the mechanism behind the modification, since fiber bridging, the most common reinforcing mechanism for fiber-reinforced composites, cannot be simply applied because CNCs are too short to bridge cracks in cement composites. ^ The mechanical tests show an increase in the flexural …


Dynamic Control Of Plasmonic Resonances With Graphene Based Nanostructures, Naresh Kumar Emani Oct 2014

Dynamic Control Of Plasmonic Resonances With Graphene Based Nanostructures, Naresh Kumar Emani

Open Access Dissertations

Light incident on a metallic structure excites collective oscillations of electrons termed as plasmons. These plasmons are useful in control and manipulation of information in nanoscale dimensions and at high operating frequencies. Hence, the field of plasmonics opens up the possibility of developing nanoscale optoelectronic circuitry for computing and sensing applications. One of the challenges in this effort is the lack of tunable plasmonic resonance. Currently, the resonant wavelength of plasmonic structure is fixed by the material and structural parameters. Post-fabrication dynamic control of a plasmonic resonance is rather limited.^ In this thesis we explore the combination of optoelectrical properties …


Hierarchical Cell Fluid Extracellular Matrix Interaction In Cell Microenvironment, Soham Ghosh Oct 2014

Hierarchical Cell Fluid Extracellular Matrix Interaction In Cell Microenvironment, Soham Ghosh

Open Access Dissertations

Hierarchical structural interactions between components of cell microenvironment, the extracellular matrix (ECM), cytoplasm, nucleus and fluid, are important phenomena that decide cell level physiological process and tissue engineering applications. One of those tissue engineering modalities is freezing of biomaterials, important in a wide variety of biomedical applications including cryopreservation and cryosurgeries. In order to design these applications, freezing-induced changes of the cells and tissues and corresponding biophysical mechanisms need to be well understood. Although the effects of freezing on cells in suspension have been extensively studied, the intracellular mechanics of cells embedded in the extracellular matrix (ECM) during freezing are …


Optical Spectroscopy And Langmuir Probe Diagnostics Of Microwave Plasma In Synthesis Of Graphene-Based Nanomaterials, Alfredo D. Tuesta Oct 2014

Optical Spectroscopy And Langmuir Probe Diagnostics Of Microwave Plasma In Synthesis Of Graphene-Based Nanomaterials, Alfredo D. Tuesta

Open Access Dissertations

Along with the revolutionary discovery and development of carbon nanostructures, such as carbon nanotubes and graphitic sheets, has arrived the potential for their application in the fields of medicine, bioscience and engineering due to their exceptional structural, thermal and electrical properties. As roll-to-roll plasma deposition systems begin to provide means for large scale production of these nanodevices, a detailed understanding of the environment responsible for their synthesis is imperative in order to more accurately design and control the growth of carbon nanodevices. To date, the understanding of the chemistry and kinetics that govern the synthesis of carbon nanodevices is only …


Design And Analysis Of Solar Cells By Coupled Electrical - Optical Simulation, Xufeng Wang Oct 2014

Design And Analysis Of Solar Cells By Coupled Electrical - Optical Simulation, Xufeng Wang

Open Access Dissertations

Careful electrical design and optical design are both crucial for achieving high-efficiency solar cells. It is common to link these two aspects serially; the optical design is first done to minimize reflection and maximize light trapping, and then the resulting optical generation rate is input to the electrical simulation. For very high efficiency solar cells that approach the Shockley-Queisser limit, however, electrical and optical transports are tightly coupled in both directions. Photons generated by radiative recombination can be reabsorbed to create additional electron-hole pairs (so-called photon recycling), which decreases losses. A variety of novel photon management schemes are currently being …


Quartz-Mems: Wet Chemical Etching Assisted By Electromagnetic Energy Sources For The Development Of Quartz Crystal To Be Used For Microelectromechanical Systems, William J. Clower Oct 2014

Quartz-Mems: Wet Chemical Etching Assisted By Electromagnetic Energy Sources For The Development Of Quartz Crystal To Be Used For Microelectromechanical Systems, William J. Clower

Doctoral Dissertations

Quartz crystal resonators have been the most commonly used timing devices to date. Today's timing market requires devices to be as small as possible and consume smaller amounts of energy. Because of the market demand, many startup companies have formed to develop silicon resonators as timing devices. Silicon resonators have poor noise and temperature performance (due to its linear temperature versus frequency coefficient). At the moment the only advantage that silicon resonators have over quartz crystal resonators is a small form factor. The photolithography processing method currently being used in industry is a very tedious task, requiring multiple etching steps …


Applications Of Halloysite Nanocontainers For Functional Protective Coating, Anupam Ramesh Joshi Oct 2014

Applications Of Halloysite Nanocontainers For Functional Protective Coating, Anupam Ramesh Joshi

Doctoral Dissertations

In this study we have explored the applications of halloysite clay nanotubes as a nanocontainer. Halloysite nanotubes are used as a storage unit for anticorrosion agents, flame retardants, and a dopant to extend the curing time for geopolymer composites. Halloysite is a naturally occurring clay mineral with a chemical formula of Al2Si2O 5(OH)4 · 2 H2O and is identical to kaolinite with the exception that it holds an additional water monolayer in its interlayered spaces. Upon heating at higher temperatures, halloysite loses the additional water monolayer, and this variant known colloquially as "meta-halloysite" has a chemical formula of Al2Si2O5(OH) 4 …


Computational Study Of Sodium Magnesium Hydride For Hydrogen Storage Applications, Fernando Antonio Soto Valle Oct 2014

Computational Study Of Sodium Magnesium Hydride For Hydrogen Storage Applications, Fernando Antonio Soto Valle

Doctoral Dissertations

Hydrogen offers considerable potential benefits as an energy carrier. However, safe and convenient storage of hydrogen is one of the biggest challenges to be resolved in the near future. Sodium magnesium hydride (NaMgH 3) has attracted attention as a hydrogen storage material due to its light weight and high volumetric hydrogen density of 88 kg/m3. Despite the advantages, hydrogen release in this material occurs at approximately 670 K, which is well above the operable range for on-board hydrogen storage applications. In this regard, hydrogen release may be facilitated by substitution doping of transition-metals. This dissertation describes first-principles computational methods that …


Nanotechnology And Additive Manufacturing Platforms For Clinical Medicine: An Investigation Of 3d Printing Bioactive Constructs And Halloysite Nanotubes For Drug Delivery And Biomaterials, Jeffery A. Weisman Oct 2014

Nanotechnology And Additive Manufacturing Platforms For Clinical Medicine: An Investigation Of 3d Printing Bioactive Constructs And Halloysite Nanotubes For Drug Delivery And Biomaterials, Jeffery A. Weisman

Doctoral Dissertations

Personalized medicine requires the development of new technologies for controlled or targeted drug delivery. Three-dimensional (3D) printing and additive manufacturing techniques can be used to generate customized constructs for bioactive compound delivery. Nanotechnology in the form of nanoparticles, used as a stand-alone construct or for material enhancements, can significantly improve established biomaterials such as PMMA based bone cements or enable new technology to have enhanced capabilities. Combinations of the technologies can be used in such applications as infectious disease treatments, chemotherapeutic targeted drug delivery or targeted delivery of nearly any bioactive compound.

Chemotherapeutic or antibiotic enhanced 3D printing filaments were …


Nanogap Device: Fabrication And Applications, Jun Hyun Han Oct 2014

Nanogap Device: Fabrication And Applications, Jun Hyun Han

Dissertations (1934 -)

A nanogap device as a platform for nanoscale electronic devices is presented. Integrated nanostructures on the platform have been used to functionalize the nanogap for biosensor and molecular electronics. Nanogap devices have great potential as a tool for investigating physical phenomena at the nanoscale in nanotechnology. In this dissertation, a laterally self-aligned nanogap device is presented and its feasibility is demonstrated with a nano ZnO dot light emitting diode (LED) and the growth of a metallic sharp tip forming a subnanometer gap suitable for single molecule attachment.

For realizing a nanoscale device, a resolution of patterning is critical, and many …


Control Of Light-Matter Interaction Via Dispersion Engineering, Harish Natarajan Swaha Krishnamoorthy Oct 2014

Control Of Light-Matter Interaction Via Dispersion Engineering, Harish Natarajan Swaha Krishnamoorthy

Dissertations, Theses, and Capstone Projects

This thesis describes the design, fabrication and characterization of certain nanostructures to engineer light-matter interaction. These materials have peculiar dispersion properties owing to their structural design, which is exploited to control spontaneous emission properties of emitters such as quantum dots and dye molecules. We will discuss two classes of materials based on the size of their unit cell compared to the wavelength of the electromagnetic radiation they interact with. The first class are hyperbolic metamaterials (HMM) composed of alternate layers of a metal and a dielectric of thicknesses much smaller than the wave- length. Using a HMM composed of silver …


Transport And Optical Properties Of Low-Dimensional Complex Systems, Andrii Iurov Oct 2014

Transport And Optical Properties Of Low-Dimensional Complex Systems, Andrii Iurov

Dissertations, Theses, and Capstone Projects

Over the last five years of my research work, I, my research was mainly concerned with certain crucial tunneling, transport and optical properties of novel low-dimensional graphitic and carbon-based materials as well as topological insulators. Both single-electron and many-body problems were addressed. We investigated the Dirac electrons transmission through a potential barrier in the presence of circularly polarized light. An anomalous photon-assisted enhanced transmission is predicted and explained in a comparison with the well-known Klein paradox. It is demonstrated that the perfect transmission for nearly-head-on collision in an infinite graphene is suppressed in gapped dressed states of electrons, which is …


Manipulation Of Light In Plasmonic Nano-Structures, Rehab Kotb Abd-Allah Oct 2014

Manipulation Of Light In Plasmonic Nano-Structures, Rehab Kotb Abd-Allah

Theses and Dissertations

Manipulating light at nano-scale is usually shadowed by the diffraction limit. Recently, plasmonics have emerged as a new technology that enables confining light at nano-scale. Using plasmonic structures, photonic devices can be shrunk from the micro-scale to the nano-scale. In this thesis, a novel structure to a plasmonic nano-filter is introduced and analyzed. The proposed nano-resonator has low loss, compact size and good sensing characteristics. A closed form model to the filter behavior is developed. The model is extracted from the waveguide physical parameters and provides a physical insight into the structure of the filter. An analytical model to the …


Thermal Convection Of Non-Fourier Fluids, Rahim Mohammadhasani Khorasany Sep 2014

Thermal Convection Of Non-Fourier Fluids, Rahim Mohammadhasani Khorasany

Electronic Thesis and Dissertation Repository

The natural convection of non-Fourier fluids of the dual-phase-lagging (DPL) type is examined. These fluids possess a relaxation time and a retardation time, reflecting the delay in the response of the heat flux and the temperature gradient with respect to one another. DPL fluids span a wide range of applications, including low-temperature liquids, fluids subjected to fast heat transfer processes, and nanofluids (NFs), for which both the relaxation and retardation times are expressed in terms of nanoparticle concentration and solution properties. Both stationary and oscillatory convection become equally probable as the relaxation time increases. A nonlinear spectral approach is also …


Origins Of Phase Contrast In The Atomic Force Microscope In Liquids, John Melcher, Carolina Carrasco, Xin Xu, Jose L. Carrascosa, Julio Gomez-Herrero, Pedro Jose De Pablo, Arvind Raman Sep 2014

Origins Of Phase Contrast In The Atomic Force Microscope In Liquids, John Melcher, Carolina Carrasco, Xin Xu, Jose L. Carrascosa, Julio Gomez-Herrero, Pedro Jose De Pablo, Arvind Raman

Xin Xu

We study the physical origins of phase contrast in dynamic atomic force microscopy (dAFM) in liquids where low-stiffness microcantilever probes are often used for nanoscale imaging of soft biological samples with gentle forces. Under these conditions, we show that the phase contrast derives primarily from a unique energy flow channel that opens up in liquids due to the momentary excitation of higher eigenmodes. Contrary to the common assumption, phase-contrast images in liquids using soft microcantilevers are often maps of short-range conservative interactions, such as local elastic response, rather than tip-sample dissipation. The theory is used to demonstrate variations in local …


Compositional Contrast Of Biological Materials In Liquids Using The Momentary Excitation Of Higher Eigenmodes In Dynamic Atomic Force Microscopy, Xin Xu, John Melcher, Sudipta Basak, R. Reifenberger, Arvind Raman Sep 2014

Compositional Contrast Of Biological Materials In Liquids Using The Momentary Excitation Of Higher Eigenmodes In Dynamic Atomic Force Microscopy, Xin Xu, John Melcher, Sudipta Basak, R. Reifenberger, Arvind Raman

Xin Xu

Atomic Force microscope (AFM) cantilevers commonly used for imaging soft biological samples in liquids experience a momentary excitation of the higher eigenmodes at each tap. This transient response is very sensitive to the local sample elasticity under gentle imaging conditions because the higher eigenmode time period is comparable to the tip-sample contact time. By mapping the momentary excitation response, we demonstrate a new scanning probe spectroscopy capable of resolving with high sensitivity the variations in the elasticity of soft biological materials in liquids.


Dynamics Of Surface-Coupled Microcantilevers In Force Modulation Atomic Force Microscopy - Magnetic Vs. Dither Piezo Excitation, Xin Xu, Marisol Koslowski, Arvind Raman Sep 2014

Dynamics Of Surface-Coupled Microcantilevers In Force Modulation Atomic Force Microscopy - Magnetic Vs. Dither Piezo Excitation, Xin Xu, Marisol Koslowski, Arvind Raman

Xin Xu

Force modulation atomic force microscopy is widely used for mapping the nanoscale mechanical properties of heterogeneous or composite materials using low frequency excitation of a microcantilever scanning the surface. Here we show that the excitation mode - magnetic or dither piezo, has a major influence on the surface-coupled microcantilever dynamics. Not only is the observed material property contrast inverted between these excitation modes but also the frequency response of the surface-coupled cantilever in the magnetic mode is near-ideal with a clear resonance peak and little phase distortion thus enabling quantitative mapping of the local mechanical properties. (C) 2012 American Institute …


Accurate Force Spectroscopy In Tapping Mode Atomic Force Microscopy In Liquids, Xin Xu, John Melcher, Arvind Raman Sep 2014

Accurate Force Spectroscopy In Tapping Mode Atomic Force Microscopy In Liquids, Xin Xu, John Melcher, Arvind Raman

Xin Xu

Existing force spectroscopy methods in tapping mode atomic force microscopy (AFM) such as higher harmonic inversion [M. Stark, R. W. Stark, W. M. Heckl, and R. Guckenberger, Proc. Natl. Acad. Sci. U. S. A. 99, 8473 (2002)] or scanning probe acceleration microscopy [J. Legleiter, M. Park, B. Cusick, and T. Kowalewski, Proc. Natl. Acad. Sci. U. S. A. 103, 4813 (2006)] or integral relations [M. Lee and W. Jhe, Phys. Rev. Lett. 97, 036104 (2006); S. Hu and A. Raman, Nanotechnology 19, 375704 (2008); H. Holscher, Appl. Phys. Lett. 89, 123109 (2006); A. J. Katan, Nanotechnology 20, 165703 (2009)] require …


Investigation Of The Dynamics Of Photocarriers During Photoelectrochemical Water Splitting By Combination Of Photoelectrochemistry And Transient Absorption Spectroscopy, Wen-Hua Leng Aug 2014

Investigation Of The Dynamics Of Photocarriers During Photoelectrochemical Water Splitting By Combination Of Photoelectrochemistry And Transient Absorption Spectroscopy, Wen-Hua Leng

Journal of Electrochemistry

Semiconductor photoelectrochemical hydrogen production is an important and promising technology for utilizing solar energy. The efficiency of hydrogen production depends on the efficiencies of separation and transport of photo-generated carriers. A deep understanding of the behavior of these processes has guiding significance for designing efficient solar hydrogen device. photoelectrochemical and transient absorption spectroscopy methods are powerful tool for studying the microscopic dynamics and mechanism of photocatalytic reaction. This review describes the part of the latest results of the author regarding the semiconductor photoelectrochemical hydrogen production obtained by these methods,and the problems and future research priorities in this field are proposed.


Room Temperature Ionic Liquid Templated Meso-Macroporous Material By Self-Assembled Giant Gold Nanoparticles And Its Enhancement On The Direct Electrochemistry Of Cytochrome C, Pei Li, Dong-Ping Zhan, Yuan-Hua Shao Aug 2014

Room Temperature Ionic Liquid Templated Meso-Macroporous Material By Self-Assembled Giant Gold Nanoparticles And Its Enhancement On The Direct Electrochemistry Of Cytochrome C, Pei Li, Dong-Ping Zhan, Yuan-Hua Shao

Journal of Electrochemistry

Room temperature ionic liquid (RTIL) is used as a soft-template to organize a meso-macroporous material constructed by self-assembled giant gold nanoparticles which are capped by L-cysteine. First, L-cysteine capped gold nanoparticles can self-assembly to form nanowires and sub-micrometer spherical giant particles due to the static interaction and/or the condensation reaction between the carboxyl and amino groups at the outer terminal of the ligand. Second, the spherical assembled particles can form a quasi-solid gel when grinding with a hydrophobic RTIL, 1-octyl-3-metyllimidazolium hexafluorophosphate. Finally, when the composite gel is coated on a glassy carbon electrode and then polarized by using cyclic voltammetry …


Synthesis Of Silver Nanoparticles Supported On Graphene Quantum Dots For Oxygen Reduction Reaction, Jian Ju, Wei Chen Aug 2014

Synthesis Of Silver Nanoparticles Supported On Graphene Quantum Dots For Oxygen Reduction Reaction, Jian Ju, Wei Chen

Journal of Electrochemistry

Silver-based catalysts have been extensively investigated as the platinum substituted catalysts due to their high catalytic efficiency, low cost and long-term durability. In this study, the surfactant-free silver nanoparticles supported on graphene quantum dots were synthesized through a facile approach without addition of any other protecting ligands and reducing agents. The “surface-clean” silver nanoparticles had remarkable electrocatalytic performance towards oxygen reduction reaction (ORR) with the most efficient four-electron transfer process. Compared with commercial Pt/C catalyst, the hybrid nanoparticles showed comparable catalytic performance for ORR but much higher tolerance to methanol. Such silver nanoparticles supported on graphene quantum dots may have …


Preparation And Lithium Storage Performance Of Sn-Snsb Nanoparticles, Yao Xiao, Jiao-Hong Wu, Qi Wang, Ling Huang, Jun-Tao Li, Shi-Gang Sun Aug 2014

Preparation And Lithium Storage Performance Of Sn-Snsb Nanoparticles, Yao Xiao, Jiao-Hong Wu, Qi Wang, Ling Huang, Jun-Tao Li, Shi-Gang Sun

Journal of Electrochemistry

Tin was widely studied as alternative anode material to carbon for lithium-ion batteries thanks to its much higher theoretical capacity. However, a pure tin electrode suffers severely from its poor cycleability due to mechanical fatigue caused by volume change during lithium insertion and extraction processes. Tin-based alloy may improve the cycleability property of tin electrode. In this article, we report facile synthesis of spherical Sn-SnSb nanopartciles using a simple solvent-thermal approach. It is amazing to find that the spherical Sn-SnSb nanoparticles can circumvent volume changes effectively during charge-discharge process. Electrochemical discharge/charge results show that the spherical Sn-SnSb nanoparticles electrode exhibits …


A Sensitive And Label-Free Electrochemical Aptasensor Based On Signal Amplification Of Carbon Nanotubes, Chun-Yan Deng, Hui-Min Fan, Juan Xiang, Yuan-Jian Li Aug 2014

A Sensitive And Label-Free Electrochemical Aptasensor Based On Signal Amplification Of Carbon Nanotubes, Chun-Yan Deng, Hui-Min Fan, Juan Xiang, Yuan-Jian Li

Journal of Electrochemistry

A label-free electrochemical sensing electrode for highly sensitive detection of adenosine was constructed based on the signal amplification of carbon nanotubes (CNTs). The change in the interfacial feature of the modified electrode was characterized by electrochemical impedance spectroscopy. Using [Ru(NH3)6]3+ as the signaling moiety, adenosine with concentrations as low as 0.027 nmol·L-1 can be selectively detected. Additionally, the fabrication of this present aptasensor was simple, time-saving and cost-effective. Compared with other reported aptasensors, the proposed aptasensor had advantages of excellent sensitivity, selectivity and simplicity, which plays a potential role in development of aptasensor.


In-Situ Afm Force Curve Investigations On Layered Structures Of Au(111)-Ionic Liquid Interfaces And Temperature Dependence, Xiao Zhang, Yun-Xin Zhong, Jia-Wei Yan, Bing-Wei Mao Aug 2014

In-Situ Afm Force Curve Investigations On Layered Structures Of Au(111)-Ionic Liquid Interfaces And Temperature Dependence, Xiao Zhang, Yun-Xin Zhong, Jia-Wei Yan, Bing-Wei Mao

Journal of Electrochemistry

By utilizing in-situ AFM force curve measurements systematic investigations have been carried out on Au(111)-ionic liquid interface in BMIPF6 and OMIPF6 of imidazolium-based ionic liquids with different lengths of alkyl side chains. The temperature dependence of the number, thickness and stability of the layered structures of each system are studied by performing AFM force curve measurements at potentials far negative of the PZC. The layered structures at Au (111)/BMIPF6 interface are composed of two charged interior layers and two neutral exterior layers at -1.0 V, while those at Au (111)/OMIPF6 interface only one charged interior layer …


Electrochemical Fabrication Of Two-Dimensional Flower-Like Pt Nanostructures For Methanol Electrocatalytic Oxidation, Xia Wang, Jun Hu, Yong-Jun Li Aug 2014

Electrochemical Fabrication Of Two-Dimensional Flower-Like Pt Nanostructures For Methanol Electrocatalytic Oxidation, Xia Wang, Jun Hu, Yong-Jun Li

Journal of Electrochemistry

Two-dimensional flower-like Pt nanostructures (2D FPNs) were fabricated on glassy carbon substrates by galvanostatical electrochemical technique. The electrolyte was the HAuCl4 + HClO4 aqueous solution without addition of any structure-directing organic reagent, which made as-prepared Pt nanostructures cleaner, exhibiting much higher reactivity. Scanning electron microscopic images revealed that 2D FPNs were spherical Pt nano-flowers constructed by the smallest building blocks, nano-leaves. The number density of spherical Pt nano-flowers can be tuned by controlling the electrodeposition time. High resolution transmission electron microscopic images indicated that each nano-leaf was formed by growing along Pt(111) direction. Electrocatalytic activities of as-prepared 2D …


Electrochemical And Surface Enhanced Raman Spectroscopic Studies Of Benzimidazole On Nickel Electrode, Ping-Jie Wei, Ya-Xian Yuan, Min-Min Xu, Jian-Lin Yao, Ren-Ao Gu Aug 2014

Electrochemical And Surface Enhanced Raman Spectroscopic Studies Of Benzimidazole On Nickel Electrode, Ping-Jie Wei, Ya-Xian Yuan, Min-Min Xu, Jian-Lin Yao, Ren-Ao Gu

Journal of Electrochemistry

By measuring cyclic voltammograms and polarization curves, the inhibition effects of benzimidazole (BMIH) concentration in acetonitrile system on a nickel electrode were investigated. It was found that the oxidation and the corrosion potentials shifted positively, and the oxidation current decreased with the increase in the concentration of BIMH. Potential dependent adsorption and film formation behavior of BMIH on the nickel electrode were investigated by in situ SERS spectroscopy. With the potential moving from negative direction to positive direction, the complexes made of BIMH and nickel were formed, preventing the nickel electrode from corrosion. In addition, the 0.001 mol·L-1 of …


Synthesis And Characterization Of Nanostructured Nickel Diselenide Nise2 From The Decomposition Of Nickel Acetate, (Ch3co2)2ni, Ming Yin, Stephen O'Brien Aug 2014

Synthesis And Characterization Of Nanostructured Nickel Diselenide Nise2 From The Decomposition Of Nickel Acetate, (Ch3co2)2ni, Ming Yin, Stephen O'Brien

Publications and Research

Solution processed NiSe2 nanorods were synthesized by a modified colloidal synthesis technique, by chemical reaction of TOPSe and nickel acetate at 150 ∘C. The rods exist as an oleic acid ligand stabilized solution, with oleic acid acting as a capping group. Structural characterization by X-ray diffraction and transmission electron microscopy indicates that the particles are rod-like shaped crystals with a high and relatively constant aspect ratio (30 : 1). TEM shows that the width and the length of the nanorods are in the range 10–20nm and 300–350 nm, respectively. XRD indicates that the nanorods are pure and well crystallized. The …