Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

2014

University of Arkansas, Fayetteville

Discipline
Keyword
Publication

Articles 1 - 15 of 15

Full-Text Articles in Nanoscience and Nanotechnology

Recycling Wastewater For Hydraulic Fracturing By Use Of Nanofiltration Membranes, Haley D. Cleous Dec 2014

Recycling Wastewater For Hydraulic Fracturing By Use Of Nanofiltration Membranes, Haley D. Cleous

Chemical Engineering Undergraduate Honors Theses

Hydraulic fracturing creates large volumes of produced water, contaminated with organics, suspended solids, and dissolved minerals. This water must either be disposed of in injection wells or treated for reuse. One option is to use a combination of ultrafiltration and nanofiltration to treat this water and reuse it in future hydraulic fracturing wells. The object of this study was to test and characterize commercial nanofiltration membranes. The work done for this project will lead to future work in modifying membranes to improve the rejection of desired components.


Photoelectric Characterization Of Bacteriorhodopsin Reconstituted In Lipid Bilayer Membrane, Joel Kamwa Dec 2014

Photoelectric Characterization Of Bacteriorhodopsin Reconstituted In Lipid Bilayer Membrane, Joel Kamwa

Graduate Theses and Dissertations

The objective of this work was to conduct basic research in biologically inspired energy conversion solutions. A photosynthetic protein (Bacteriorhodopsin) was reconstituted in a bi-layer membrane. Then, when a laser beam was shined on the membrane, the photon energy was used by the protein to pump protons across the membrane. The translocation of protons across the membrane was measured as photocurrent. For this purpose, a system was built to characterize the lipid bilayer membranes and to measure the photocurrent. The lipid bilayer membrane was characterized by its capacitance and resistance. A picoampere photocurrent was observed when Bacteriorhodopsin protein was present …


Wear Resistant Polydopamine/Ptfe Nanoparticle Composite Coating For Dry Lubrication Applications, Samuel George Beckford Dec 2014

Wear Resistant Polydopamine/Ptfe Nanoparticle Composite Coating For Dry Lubrication Applications, Samuel George Beckford

Graduate Theses and Dissertations

This dissertation presents an investigation into the effect of nanoparticle fillers and a polydopamine adhesive primer on the tribological performance of thin PTFE films. The principal objective of this investigation was to reduce wear in PTFE films, an issue which precludes the use of PTFE films in tribological applications requiring high durability. The friction and wear of the composite films were evaluated using a ball-on-flat configuration in linear reciprocating motion. It was found that the use of a polydopamine adhesive primer reduces the wear of PTFE films more than 600 times. X-ray photoelectron spectroscopy (XPS) results show that a tenacious …


Highly Transparent, Self-Cleaning, And Antireflective Nanoparticle Coatings, Corey Seth Thompson Dec 2014

Highly Transparent, Self-Cleaning, And Antireflective Nanoparticle Coatings, Corey Seth Thompson

Graduate Theses and Dissertations

Current solar panel technologies require a sheet of glass to serve as both mechanical support and to protect the cells from the environment. The reflection from the glass sheet can reflect up to 8% of the incident light, reducing the power output of the panel. Antireflective coatings can be used to allow more light to enter the panel to be converted into usable electricity. However, no solid thin film materials exhibit a low enough index of refraction to serve as antireflective coatings for common solar glass. The main goal of this research was to investigate the self-cleaning, antifogging, and antireflective …


Atomistic Simulation And Virtual Diffraction Characterization Of Alumina Interfaces: Evaluating Structure And Stability For Predictive Physical Vapor Deposition Models, Shawn Patrick Coleman Aug 2014

Atomistic Simulation And Virtual Diffraction Characterization Of Alumina Interfaces: Evaluating Structure And Stability For Predictive Physical Vapor Deposition Models, Shawn Patrick Coleman

Graduate Theses and Dissertations

The objectives of this work are to investigate the structure and energetic stability of different alumina (Al2O3) phases using atomistic simulation and virtual diffraction characterization. To meet these objectives, this research performs molecular statics and molecular dynamics simulations employing the reactive force-field (ReaxFF) potential to model bulk, interface, and surface structures in the θ-, γ-, κ-, and α-Al2O3 system. Simulations throughout this study are characterized using a new virtual diffraction algorithm, developed and implemented for this work, that creates both selected area electron diffraction (SAED) and x-ray diffraction (XRD) line profiles without assuming …


Self-Assembly Of Gold Nanosphere Dimers By Inertial Force, George Andrew Christopher Sakhel Aug 2014

Self-Assembly Of Gold Nanosphere Dimers By Inertial Force, George Andrew Christopher Sakhel

Graduate Theses and Dissertations

The morphology and composition of a nanoparticle (NP) play a critical role in determining the NP's properties and function. To date, researchers have created a myriad of NPs of different shapes, sizes, and compositions with interesting attributes and applications ushering a revolution in medicine, electronics, microscopy, and microfluidics.

In this study, gold (Au) nanosphere dimers (NSDs) have been synthesized through a novel self-assembly method. These particles were created from Au NPs mono-dispersed in aqueous solution via a process of centrifugation and capping agent replacement. Au NSDs consist of two Au NPs combined together with minimal gaps between them. Optical spectral …


Nanoscale Manipulation Of Pristine And Functionalized Freestanding Graphene Using Scanning Tunneling Microscopy, Matthew Ackerman Aug 2014

Nanoscale Manipulation Of Pristine And Functionalized Freestanding Graphene Using Scanning Tunneling Microscopy, Matthew Ackerman

Graduate Theses and Dissertations

Over the past ten years the 2D material graphene has attracted an enourmous amount of attention from researchers from across diciplines and all over the world. Many of its outstanding electronic properties are present only when it is not interacting with a substrate but is instead freestanding. In this work I demonstrate that pristine and functionalized freestanding graphene can be imaged using a scanning tunneling microscope (STM) and that imaging a flexible 2D surface is fundamentally different from imaging a bulk material due to the attraction between the STM tip and the sample. This attraction can be used to manipulate …


Nanofabrication Of Metallic Nanostructures And Integration With Light Detection Devices, Liang Huang Aug 2014

Nanofabrication Of Metallic Nanostructures And Integration With Light Detection Devices, Liang Huang

Graduate Theses and Dissertations

Metallic nanostructures have been investigated with various applications especially for integration with light detection devices. The incident light can be manipulated by those nanostructures to enhance light absorption therefor improve device performance. However, previous studies focused on optical design. The electrical properties of these integrated light detection devices have not been fully considered. The photon generated carriers transport and collection are critical for light detection devices as well. An optimized device platform considering from both the optical and electrical aspects to fully utilize these nanostructures is highly desired for future light detection devices.

This dissertation targeted on three objectives, beginning …


Effects Of Nanoholes Grown By Molecular Beam Droplet Epitaxy On Electrical Properties Of Two Dimensional Electron Gas, Yusuke Hirono Aug 2014

Effects Of Nanoholes Grown By Molecular Beam Droplet Epitaxy On Electrical Properties Of Two Dimensional Electron Gas, Yusuke Hirono

Graduate Theses and Dissertations

The effects of nanoholes, grown by molecular beam droplet epitaxy, on the electrical properties of quantum well (QW) heterostructures are reported. To investigate how the depth of nanoholes affect the electrical properties of the QW heterostructures, the growth conditions for nanoholes were optimized with respect to their depth and density. Using the results of the optimization of the nanohole growth, three InGaAs pseudomorphic quantum wells with nanoholes were investigated with varied depth and a constant density. A QW heterostructure without nanoholes was grown as a reference structure. For all the samples, temperature dependent Hall effect measurements, noise studies as a …


Characterizing Nanoparticle Size By Dynamic Light Scattering Technique (Dls), Marzia Zaman Aug 2014

Characterizing Nanoparticle Size By Dynamic Light Scattering Technique (Dls), Marzia Zaman

Graduate Theses and Dissertations

The Dynamic Light Scattering Technique was used to determine the size, shape and diffusion coefficient of nanoparticle. The intensity auto correlation functions of light scattered by particles in a solution were measured by using a photomultiplier tube and analyzed to get the relaxation rates for decay of intensity correlations, which correspond to the diffusion constants pertaining to the motion of the particle. In the case of nanorods there are two types of motion - translational and rotational. By dis-entangling the relaxation rates, corresponding to these two types of motion, the shape and size of nanoparticle could be characterized. These experiments, …


Fabrication Of Single Nanowire Device Using Electron Beam Lithography, Thach Pham May 2014

Fabrication Of Single Nanowire Device Using Electron Beam Lithography, Thach Pham

Graduate Theses and Dissertations

One dimensional nanostructure materials such as nanowires have drawn many interests among the scientific community for a wide range of applications such as field-effect transistors [1], [2], inverters[3], light-emitting diode [1], lasers [4], nanosensors [5], [6], and photodetectors [7]... Comparing with the characterization of nanowire arrays, characterizing a single nanowire will definitely provide a better understanding on new nanowire properties due to simplified behaviors of devices. Although promising theories could be drawn from those results, fabrication of test structure for single nanowire measurements cannot be easily processed using standard microfabrication techniques. Therefore, electron beam lithography integrated with photolithography technique has …


Broadband Nanostructured Antireflection Coating For Enhancing Inas/Gaas Quantum Dots Solar Cells Performance, Jony C. Sarker May 2014

Broadband Nanostructured Antireflection Coating For Enhancing Inas/Gaas Quantum Dots Solar Cells Performance, Jony C. Sarker

Graduate Theses and Dissertations

The broadband suppression in reflection is one of the primary focuses in high efficiency solar cell research. In this thesis, a moth-eye inspired nanostructure antireflection coating is fabricated on InAs/GaAs quantum dots solar cell in order to enhance the power conversion efficiency. The abrupt refractive index transition between air and GaAs surface is replaced by a tapering zinc oxide nanoneedle on planar tantalum pentoxide coating. The antireflection structure provides gradual reduction of refractive index away from the solar cell top surface.

The nanostructured antireflection coating is fabricated by utilizing chemical bath deposition of tapered zinc oxide nanoneedles on planar tantalum …


Understanding The Influence Of Interfacial Chemistry In Core, Core/Shell And Core/Shell/Shell Quantum Dots On Their Fluorescence Properties, Omondi Bernard Omogo May 2014

Understanding The Influence Of Interfacial Chemistry In Core, Core/Shell And Core/Shell/Shell Quantum Dots On Their Fluorescence Properties, Omondi Bernard Omogo

Graduate Theses and Dissertations

Colloidal semiconductor nanocrystals (quantum dots) have received a great deal of attention due to their superior size tunable properties and promising applications in many areas. Some of the most practical areas of their applications include light emitting diodes (LED), photovoltaic and biological studies. Synthetic methods of these crystals is becoming more established with new strategies being reported every now and then. However, quantitative studies connecting the processes at the interface, namely core-ligand, core-shell and shell-shells, to the overall quantum dots fluorescence properties are not well understood. Specifically for cores, relating surface-atoms interactions, solvents, ligands nature, density and functional groups on …


Fabrication And Characterization Of Amorphous/Nanocrystalline Thin Film Composite, Benjamin Seth Newton May 2014

Fabrication And Characterization Of Amorphous/Nanocrystalline Thin Film Composite, Benjamin Seth Newton

Graduate Theses and Dissertations

Combining the absorption abilities of amorphous silicon and the electron transport capabilities of crystalline silicon would be a great advantage to not only solar cells but other semiconductor devices. In this work composite films were created using molecular beam epitaxy and electron beam deposition interchangeably as a method to create metallic precursors. Aluminum induced crystallization techniques were used to convert an amorphous silicon film with a capping layer of aluminum nanodots into a film composed of a mixture of amorphous silicon and nanocrystalline silicon. This layer was grown into the amorphous layer by cannibalizing a portion of the amorphous silicon …


Infrared Energy Harvesting For Optoplasmonics From Nanostructured Metamaterials, Gregory Thomas Forcherio May 2014

Infrared Energy Harvesting For Optoplasmonics From Nanostructured Metamaterials, Gregory Thomas Forcherio

Graduate Theses and Dissertations

Metamaterials exhibit unique optical resonance characteristics which permit precise engineering of energy pathways within a device. The ability of plasmonic nanostructures to guide electromagnetism offers a platform to reduce global dependence on fossil fuels by harvesting waste heat, which comprises 60% of generated energy around the world. Plasmonic metamaterials were hypothesized to support an exchange of energy between resonance modes, enabling generation of higher energy photons from waste infrared energy. Infrared irradiation of a metamaterial at the Fano coupling lattice resonance was anticipated to re-emit as higher energy visible light at the plasmon resonance. Photonic signals from harvested thermal energy …