Open Access. Powered by Scholars. Published by Universities.®

Manufacturing Commons

Open Access. Powered by Scholars. Published by Universities.®

Heat Transfer, Combustion

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 66

Full-Text Articles in Manufacturing

Liquid Nitrogen Shrink-Fitting Process, Natalie Harvey Jan 2024

Liquid Nitrogen Shrink-Fitting Process, Natalie Harvey

The Journal of Purdue Undergraduate Research

No abstract provided.


Additively Manufactured Nature Inspired Morphology For Redesign: Advancing Next Generation Energy Systems, Vanshika Singh Dec 2023

Additively Manufactured Nature Inspired Morphology For Redesign: Advancing Next Generation Energy Systems, Vanshika Singh

Doctoral Dissertations

To meet cleaner energy goals and increasing demand, energy systems such as gas turbines and power plants are required to be operated under harsh loading conditions like higher temperatures and pressures, fluctuating loads, and corrosive environments. Advanced manufacturing techniques such as additive manufacturing (AM) have put us on the trajectory for next-generation system designs, allowing complex geometries and high-temperature alloys with tailored material properties. We need new and systematic design philosophies to use AM's unique characteristics prudently. For a given functionality, nature tends to provide similar solutions in animate and inanimate structures. We propose to take inspiration from nature's repetitive …


Thermal Resistance Characterization Of High-Voltage Sic Power Module, Landon Lemmons Dec 2023

Thermal Resistance Characterization Of High-Voltage Sic Power Module, Landon Lemmons

Mechanical Engineering Undergraduate Honors Theses

Researchers within the University of Arkansas Electrical Engineering Research Department have embarked on a project aimed at enhancing the thermal performance of high-voltage power modules. To aid in the progress of this project, the design, and development of a thermal tester device are needed. The primary objective of this device is to determine the various thermal properties of high-voltage power modules that the electrical engineering department has developed. Additionally, the project aims to facilitate electrical loading tests on power modules and provide researchers with the means to calibrate the power module in terms of thermal load. This project also possesses …


Thermal Transport And Physical Characteristics Of Silver-Reinforced Biodegradable Nanolubricant, Jaime Taha-Tijerina, Karla Aviña, Nicolás Antonio Ulloa-Castillo, Dulce Viridiana Melo-Maximo May 2023

Thermal Transport And Physical Characteristics Of Silver-Reinforced Biodegradable Nanolubricant, Jaime Taha-Tijerina, Karla Aviña, Nicolás Antonio Ulloa-Castillo, Dulce Viridiana Melo-Maximo

Informatics and Engineering Systems Faculty Publications and Presentations

In this investigation, the thermal transport behavior of biodegradable lubricant reinforced with silver nanostructures (AgNs) at various filler fractions of 0.01, 0.05, 0.10, and 0.20 weight percent was evaluated over a temperature scan analysis, ranging from room temperature up to 60 °C. The experimental results revealed significant gradual enhancements in thermal conductivity as AgNs concentration and evaluating temperatures were increased. These improvements showed the important role of nanostructures’ interaction within the biodegradable lubricant. The thermal conductivity performance improved for nanolubricants ranging from 6.5% at 30 °C and 0.20 wt.% AgNs content up to a maximum 32.2%, which was obtained at …


Efficient Sintering Of Lunar Soil Using Concentrated Sunlight, Diprajit Biswas May 2023

Efficient Sintering Of Lunar Soil Using Concentrated Sunlight, Diprajit Biswas

Electronic Theses and Dissertations

Construction material is one crucial need for long-term habitation on the moon. When concentrated for high heat flux, solar radiation can heat lunar soil or regolith until it sinters at temperatures above 900°C. The solid, sintered soil simulant can be used as construction material. This work explores the conditions leading to effective lunar soil sintering for both direct and indirect irradiated sintering. Lunar soil simulants were sintered using concentrated light from a xenon-arc lamp with varying heat flux intensity. During direct sintering of LHS-1, a sintering range of 860°C-1140°C corresponding to a peak heat flux of 105-120 kW/m2 was identified …


Portable Drinking Water Cooler And Dispenser, Gustavo Hernandez-Lerena, Erik Torres, Caleb Francis Parham, Terry Leung Apr 2023

Portable Drinking Water Cooler And Dispenser, Gustavo Hernandez-Lerena, Erik Torres, Caleb Francis Parham, Terry Leung

Mechanical Engineering

This document serves as the comprehensive report for the testing and building for the Portable Water-Cooling System by team AquaCool. Team AquaCool is comprised of four mechanical engineers with a passion to help the agricultural industry in their efforts to keep the health of the workers at their peak. The four engineers who partook in helping the farm workers are as follows: Caleb F. Parham, Erik Torres, Gustavo Hernandez-Lerena, and Terry Leung. To reduce the risk of heatstroke and other unwanted effects from the harsh working conditions during summer, a small and portable system was built to help in the …


Distillery, Clare Nicholas, Patrick Hanlon Jan 2023

Distillery, Clare Nicholas, Patrick Hanlon

Williams Honors College, Honors Research Projects

The goal for this project is to make a cost effective still. We will be implementing cost saving parts to create a cheap but effective still. From initial research conducted, we will try to combine a stainless steel still and copper still together so that the cheaper material (stainless steel) and the component that removes sulfur compounds (copper) are both implemented. The ME side of the project will focus on the actual design and construction of the parts that will be implemented into the still. Included in the design process will be calculations of heat transfer for the current and …


Biomass Characterization And Insulation Optimization Studies, Hussein Awad Kurdi Saad Nov 2022

Biomass Characterization And Insulation Optimization Studies, Hussein Awad Kurdi Saad

Doctoral Dissertations and Master's Theses

This study indicates how biomass materials can be effectively used as naturally sustainable alternatives to insulation materials. Barley grains and oak leaves, straw, and jute are collected, and crushed into powders/ chopped pieces. The physical characteristics are measured to characterize each powder. The biomass powder reinforced composites are manufactured in varying weight ratios. The density and thermal conductivity of composite materials are measured. The properties of composites compared to those of commercial insulation materials are found to be close to them. Furthermore, genetic algorithms (GA) can be used to achieve multi-objective optimization entailing maximizing insulation (minimizing heat transfer) and simultaneously …


Hypoxic Incubation Chamber, Simone Lisette Helfrich, Makenzie Nicole Jones Nov 2022

Hypoxic Incubation Chamber, Simone Lisette Helfrich, Makenzie Nicole Jones

Biomedical Engineering: Graduate Reports and Projects

This paper describes the design, manufacturing, and testing of a novel controllable hypoxic incubator with fully functional oxygen gas control and temperature control in a humid environment. On the current market, a majority of the few hypoxic incubators use pre-mixed gas that does not offer precise control over gas concentration. The objective for this project was to create a chamber that allows the user to set the O2 concentration to varying set points of % O2 while maintaining the chamber at a constant body temperature, CO2 level, humidity, and sterility. To start the project, multiple concepts were developed for the …


Hypoxic Incubation Chamber, Simone Lisette Helfrich, Makenzie Nicole Jones Nov 2022

Hypoxic Incubation Chamber, Simone Lisette Helfrich, Makenzie Nicole Jones

Master's Theses

This paper describes the design, manufacturing, and testing of a novel controllable hypoxic incubator with fully functional oxygen gas control and temperature control in a humid environment. On the current market, a majority of the few hypoxic incubators use pre-mixed gas that does not offer precise control over gas concentration. The objective for this project was to create a chamber that allows the user to set the O2 concentration to varying set points of % O2 while maintaining the chamber at a constant body temperature, CO2 level, humidity, and sterility. To start the project, multiple concepts were developed for the …


Development And Evaluation Of Modeling Approaches For Extrusion-Based Additive Manufacturing Of Thermoplastics, Christopher C. Bock May 2022

Development And Evaluation Of Modeling Approaches For Extrusion-Based Additive Manufacturing Of Thermoplastics, Christopher C. Bock

Electronic Theses and Dissertations

This work focuses on evaluating different modeling approaches and model parameters for thermoplastic AM, with the goal of informing more efficient and effective modeling approaches. First, different modeling approaches were tested and compared to experiments. From this it was found that all three of the modeling approaches provide comparable results and provide similar results to experiments. Then one of the modeling approaches was tested on large scale geometries, and it was found that the model results matched experiments closely. Then the effect of different material properties was evaluated, this was done by performing a fractional factorial design of experiments where …


Triggering Thermal Runaway In Lithium-Ion Batteries, Chris John May 2022

Triggering Thermal Runaway In Lithium-Ion Batteries, Chris John

Honors Scholar Theses

The proliferation of lithium-ion batteries enables electric devices such as cell phones to electric vehicles to become a reality. A latent danger, however, exists in these batteries. Mechanical, thermal, or electrical damage can initiate a phenomenon known as thermal runaway (TR). This damage causes internal short circuits within the battery, releasing heat and triggering exothermic decomposition reactions. The battery will catch fire if rapid cooling is not present. While experimental designs exist for evaluating TR, significant safety hazards and impracticality may impede testing efforts. Finite element analysis, therefore, becomes a vital tool in modeling TR and mitigation techniques. However, there …


Cooling Systems Analysis For Plastic Mold Injection Tools, Veronica Flores Quijada Apr 2022

Cooling Systems Analysis For Plastic Mold Injection Tools, Veronica Flores Quijada

Electronic Thesis and Dissertation Repository

The Plastic Injection Mold (PIM) industry has been searching for new technologies that improve the manufacturing of parts by reducing the production time and cost as well as increasing the quality of the product. The cooling systems in the PIM are designed initially to be straight-drilled into the mold, but this manufacturing process has traditionally not been very effective, since for molded parts with complex geometries, the cooling channels are not able to reach certain areas. This limitation has led the industry to develop conformal cooling channels that use the additive manufacturing technology, which allows the cooling channels to conform …


Jcati Carbon Fiber Recycler: Oven Enclosure, Margarita Romero Jan 2022

Jcati Carbon Fiber Recycler: Oven Enclosure, Margarita Romero

All Undergraduate Projects

Central Washington University partners with Boeing and is funded by the Joint Center of Aerospace Technology Innovation (JCATI) to develop a mechanism that takes carbon fiber wing trimmings from Boeing that are resin coated and recycles carbon fiber. This is done by crushing the wing trimmings and then putting it into a 500°C oven to melt off the resin. This project focuses on the enclosure for the oven and making sure precautions are met such as having the outside surface be less than 45c through heat transfer analysis, argon fills enclosure in 13 minutes through fluid dynamics analysis, and 99% …


Development Of Phase Change Thermal Storage Medium: Cooking With More Power And Versatility, Martin Osei Jan 2022

Development Of Phase Change Thermal Storage Medium: Cooking With More Power And Versatility, Martin Osei

Masters Theses

With an Insulated Solar Electric Cooker (ISEC), a 100 W solar panel directly cooks food while providing 5W off-grid electricity access; but it cooks slowly. Storing the day’s energy with phase change thermal storage allows ISEC to cook more rapidly as well as cook after sunset. The ISEC is made by sticking a 3ohm resistive to an aluminum pot (inner phase change assembly PCA) where another cooking pot fits. The resistive heater is surrounded by a bigger pot (outer PCA) that contains the PCM and is tightly sealed. The solar panel is connected to the resistive heater with a thermal …


Multi-Platform Suppressor Design Project, Wyatt A. Openshaw, Alex B. Chiples Jan 2022

Multi-Platform Suppressor Design Project, Wyatt A. Openshaw, Alex B. Chiples

Williams Honors College, Honors Research Projects

The Multi-Platform suppressor is a design that is meant to bridge the gap in the suppressor market by being compatible and configurable with both rifle and pistol platform firearms. In the specific design and prototype referenced in this report, the Multi-Platform suppressor was designed to be used with 9mm pistol and 5.56x45mm rifle calibers with safety, effectiveness, and practicality in mind. To achieve this, the suppressor is configurable, utilizing a Nielsen device in the pistol configuration and a solid mount adapter that replaces the Nielson device piston and spring while in the rifle configuration. This allows the suppressor to retain …


Creation Of A Cip Method For The Heat Exchangers At Rolls-Royce, Melanie Howe, Austin Williams, Caroline Dempsey, Bethany Fralick Aug 2021

Creation Of A Cip Method For The Heat Exchangers At Rolls-Royce, Melanie Howe, Austin Williams, Caroline Dempsey, Bethany Fralick

Journal of the South Carolina Academy of Science

Rolls-Royce produces various engines which must be tested prior to their distribution to ensure a high-quality product. The manufacturing plant contains four test cells where the engines can be subjected to high levels of torque and extreme temperatures. A heat exchanger is necessary in this testing system and over time, unwanted waste accumulates on the system’s plates. The team is tasked with developing and implementing a system mounted on a mobile cart which can provide data to determine whether the plates need to be cleaned. For this cleaning system to work, it must fully saturate the heat exchanger in cleaning …


Geometrically Complex Planar Heat Exchangers, Derli Dias Do Amaral Junior, Jose Lage Aug 2021

Geometrically Complex Planar Heat Exchangers, Derli Dias Do Amaral Junior, Jose Lage

Mechanical Engineering Research Theses and Dissertations

In this study, geometrically complex planar heat exchangers, designed in line with the Constructal Law and operating at steady-state, are investigated numerically. The work is divided into two parts, one focusing on diffusion heat transfer in a rectangular plane and another on conjugate diffusion-convection heat transfer in a circular plane heat exchanger.

In the first part, a heat generating rectangular solid volume made of a low conductivity material is cooled through a small, isothermal side-section of the domain. The diffusion cooling process is improved by distributing within the heat generating material a fixed amount of a high conductivity material. The …


Tensile Testing Environmental Chamber – Structural, Michael Ingel, Erik Soldenwagner, Austin Marshall, Lauren Schirle Jun 2021

Tensile Testing Environmental Chamber – Structural, Michael Ingel, Erik Soldenwagner, Austin Marshall, Lauren Schirle

Mechanical Engineering

Environmental chambers for tensile testing machines are used to study how a multitude of materials behave in extreme temperatures. These chambers provide the necessary information to innovate cutting edge technology for materials in fields such as aerospace. These chambers are often heavy and expensive requiring a significant amount of time and money just in the installation process alone. This report will serve to outline and define the design and fabrication of an environmental chamber, conducted by a team of four senior mechanical engineering students at California Polytechnic State University, San Luis Obispo. The goals of the project include a low-weight …


Algorithm Development Of Topology Optimization For Pcm Based Heat Sinks, Diego L. De Los Reyes May 2021

Algorithm Development Of Topology Optimization For Pcm Based Heat Sinks, Diego L. De Los Reyes

Mechanical Engineering Undergraduate Honors Theses

With the inherent usage of the computer when dealing with additive manufacturing, it only makes sense to use that higher computing power through simulation and iterative design to use the mathematical concept of topology and optimize the kind of geometry and shapes to be produced for a certain application, especially thermal ones since most 3D printing applications focus on purely the mechanical. To determine what the shape will be, an objective function of how much heat can be dispersed from a hypothetical heat source, assumed to be a type of electronic device, is maximized while being constrained by other variables, …


Entertainment 721, Mark Hendricks, Noah John, Jadon Vanyo, Chelsea Payne Jan 2021

Entertainment 721, Mark Hendricks, Noah John, Jadon Vanyo, Chelsea Payne

Williams Honors College, Honors Research Projects

The goal of this project was to design a luxury, aesthetically pleasing entertainment system with a TV lift mechanism that could be remote controlled. The design would also include a cooling cabinet for gaming systems, a remote locking system, and additional storage. Using a morphological chart and weighted decision matrix for each subsystem key features were determined to be included in the design. Several performance benchmarks were determined to accomplish the team’s design. Almost every benchmark was successful in the build of the first prototype. Several heat calculations and FEA analyses were performed on the system to ensure the success …


Thermo-Fluid Characterizations Of The Powder-Bed Fusion Additive Manufacturing Processes Using Laser And Electron Beam, M Shafiqur Rahman Dec 2020

Thermo-Fluid Characterizations Of The Powder-Bed Fusion Additive Manufacturing Processes Using Laser And Electron Beam, M Shafiqur Rahman

University of New Orleans Theses and Dissertations

The powder-bed fusion (PBF) process is a subdivision of Additive Manufacturing (AM) technology where a heat source at a controlled speed selectively fuses regions of a powder-bed material to form three-dimensional (3-D) parts. Two of the most effective PBF processes are selective laser melting (SLM) and electron beam additive manufacturing (EBAM), which can fabricate full-density metallic parts in a layer-by-layer fashion. In this study, thermal behavior and melt-pool dynamics in the PBF process are investigated by developing 3-D multiphysics-based thermo-fluid models for both SLM and EBAM, containing Ti-6Al-4V alloy as a powder-bed material. The laser and electron beams are modeled …


Numerical Modeling And Conjugate Heat Transfer Analysis Of Single U-Tube Vertical Borehole Heat Exchangers, Talha Khan Nov 2020

Numerical Modeling And Conjugate Heat Transfer Analysis Of Single U-Tube Vertical Borehole Heat Exchangers, Talha Khan

FIU Electronic Theses and Dissertations

The primary purpose of this thesis was to develop a design for improving the efficiency of the vertical type single u-tube borehole heat exchanger. A thorough literature review of the various existing analytical and numerical models of the borehole heat exchanger (BHEs) was performed and numerical modeling of the BHE was conducted to solve the conjugate heat transfer problem in the BHE in 3D using ANSYS Fluent 2019 R1. A comparison between the results obtained using various mesh sizes, types, different turbulence models showed the independence of the parameters on the numerical simulation results.

From the numerical simulation, it was …


Fly Ash Based Geopolymer For High Temperature And High Compressive Strength Applications In Aggressive Environment, Aaryan Manoj Nair, Akm S. Rahman May 2020

Fly Ash Based Geopolymer For High Temperature And High Compressive Strength Applications In Aggressive Environment, Aaryan Manoj Nair, Akm S. Rahman

Publications and Research

Geopolymers are the results of geosynthetic reactions between aluminosilicates and strong bases. This results in chemical bonds between aluminum (Al), Silicon (Si)and oxygen (O) composing polymer rings in tetrahedral coordination. These bonds give them widespread useful applications such as high heat bearing ceramics, and base construction material whilst being far more environmentally conscious. The purpose of the experiment is to examine the effect of Silicon Carbide whisker and inorganic glass particles on thermal and mechanical properties of Geopolymers. This study will help understand the effect of various compositions and concentrations of SiO2 in mechanical strength. In this experiment, the …


Thermal Modeling Of Additive Manufacturing Using Graph Theory: Validation With Directed Energy Deposition, Jordan Severson Apr 2020

Thermal Modeling Of Additive Manufacturing Using Graph Theory: Validation With Directed Energy Deposition, Jordan Severson

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Metal additive manufacturing (AM/3D printing) offers unparalleled advantages over conventional manufacturing, including greater design freedom and a lower lead time. However, the use of AM parts in safety-critical industries, such as aerospace and biomedical, is limited by the tendency of the process to create flaws that can lead to sudden failure during use. The root cause of flaw formation in metal AM parts, such as porosity and deformation, is linked to the temperature inside the part during the process, called the thermal history. The thermal history is a function of the process parameters and part design.

Consequently, the first step …


Forge Burner, Caleb Desjardins Jan 2020

Forge Burner, Caleb Desjardins

All Undergraduate Projects

Can small scale blacksmithing operations achieve a level of efficiency in their forge comparable to that of a large scale industry? The causes for the lack of efficiency needed to be pinpointed, and then the geometry of the existing design for the burner could be changed to fix the underlying issues, while still maintaining functionality. The problems with the previous design is the geometry of the intake giving an unknown air/fuel ratio, and the attachment of to the forge allowing the intake air to be contaminated by exhaust gasses. A burner needed to be designed that would solve these problems …


Development Of A Process For Thermal And Mechanical Modelling Of Screw-Driven Pellets Extrusion, Kaixiang Shi Jan 2020

Development Of A Process For Thermal And Mechanical Modelling Of Screw-Driven Pellets Extrusion, Kaixiang Shi

Master’s Theses

The overall goal of the thesis project is to develop a process for thermal and mechanical modelling of the screw-driven pellets extrusion process, and applying the model results to design extruder temperature and flow rate controllers.

The proposed extruder is designed for metal 3D printing. The device demonstrates great potential in tackling some of the major issues faced by the metal additive manufacturing community. It eliminates the use of metal powder for workplace and workers safety. It is able to produce end-use parts with industrial grade mechanical and microstructural properties. It utilizes low cost metal-loaded polymer pellets as feedstock. However, …


Rocket Motor Nozzle, Corey Hillegass Jan 2020

Rocket Motor Nozzle, Corey Hillegass

Williams Honors College, Honors Research Projects

For this honors research and senior design project, the authors will research, analyze, and manufacture a rocket motor nozzle for the Akronauts rocket design team. This research and design project will improve how the rocket design team will decide and manufacture nozzles going forward. The impact of this improvement allows the rocket design team to take steps toward being self-sustaining by manufacturing student designed parts as opposed to commercially bought parts. This will not only be successful in increasing student impact on future designs, but also provides a technical challenge for the authors and will present as an impressive feat …


Jominy Hardenability Tester With In-Situ Heating, Luke Allen Jan 2020

Jominy Hardenability Tester With In-Situ Heating, Luke Allen

Williams Honors College, Honors Research Projects

This project centers on building a Jominy Hardenability tester with In-Situ heating for the manufacturing lab at the University of Akron. A new process and setup will be designed using engineering concepts in order to make the testing more efficient and safer for the teaching and testing of metal hardness. The current Jominy testing setup has efficiency issues within the transfer of specimen from induction heater to testing rig. Our design will simplify the design by creating a test rig that removes the traveling aspect of the specimen which will limit the amount of premature cooling done and will be …


Enhanced Heat Transfer Performance By Shape Optimization Of A Non-Axisymmetric Droplet Evaporating On A Heated Micropillar, Haotian Wu Dec 2019

Enhanced Heat Transfer Performance By Shape Optimization Of A Non-Axisymmetric Droplet Evaporating On A Heated Micropillar, Haotian Wu

McKelvey School of Engineering Theses & Dissertations

Abstract

Enhanced Heat Transfer Performance by Shape Optimization of a Non-axisymmetric Droplet Evaporating on a Heated Micropillar

By

Haotian Wu

Department of Mechanical Engineering and Materials Science

Washington University in St. Louis, 2019

Research Advisor: Professor Damena Agonafer

The stacked multilayer 3D IC structure used in next generation high-powered electronics poses great challenges in dissipating their large heat flux, which causes extreme difficulties for traditional cooling technologies. In response, more advanced two-phase liquid cooling technologies, such as droplet evaporation, which utilizes the latent heat of vaporization to remove excessive heat, have been widely investigated. Compared to traditional single-phase cooling techniques, …