Open Access. Powered by Scholars. Published by Universities.®

Applied Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Tennessee, Knoxville

Discipline
Keyword
Publication Year
Publication
Publication Type

Articles 31 - 39 of 39

Full-Text Articles in Applied Mechanics

Energy Selective Neutron Imaging For The Characterization Of Polycrystalline Materials, Robin Woracek May 2015

Energy Selective Neutron Imaging For The Characterization Of Polycrystalline Materials, Robin Woracek

Doctoral Dissertations

This multipart dissertation focuses on the development and evaluation of advanced methods for material testing and characterization using neutron diffraction and imaging techniques. A major focus is on exploiting diffraction contrast in energy selective neutron imaging (often referred to as Bragg edge imaging) for strain and phase mapping of crystalline materials. The dissertation also evaluates the use of neutron diffraction to study the effect of multi-axial loading, in particular the role of applying directly shear strains from the application of torsion. A portable tension-torsion-tomography loading system has been developed for in-situ measurements and integrated at major user facilities around the …


Strain-Based Design Methodology Of Large Diameter Grade X80 Linepipe, Mark D. Lower May 2014

Strain-Based Design Methodology Of Large Diameter Grade X80 Linepipe, Mark D. Lower

Doctoral Dissertations

Continuous growth in energy demand is driving oil and natural gas production to areas that are often located far from major markets where the terrain is prone to earthquakes, landslides, and other types of ground motion. Transmission pipelines that cross this type of terrain can experience large longitudinal strains and plastic circumferential elongation as the pipeline experiences alignment changes resulting from differential ground movement. Such displacements can potentially impact pipeline safety by adversely affecting structural capacity and leak tight integrity of the linepipe steel.

Planning for new long-distance transmission pipelines usually involves consideration of higher strength linepipe steels because their …


Thermal Hydraulic Characteristics Of Fuel Defects In Plate Type Nuclear Research Reactors, Isaac Thomas Bodey May 2014

Thermal Hydraulic Characteristics Of Fuel Defects In Plate Type Nuclear Research Reactors, Isaac Thomas Bodey

Doctoral Dissertations

Turbulent flow coupled with heat transfer is investigated for a High Flux Isotope Reactor (HFIR) fuel plate. The Reynolds Averaged Navier-Stokes Models are used for fluid dynamics and the transfer of heat from a thermal nuclear fuel plate using the Multi-physics code COMSOL. Simulation outcomes are compared with experimental data from the Advanced Neutron Source Reactor Thermal Hydraulic Test Loop. The computational results for the High Flux Isotope Reactor core system provide a more physically accurate simulation of this system by modeling the turbulent flow field in conjunction with the diffusion of thermal energy within the solid and fluid phases …


Rotordynamic Analysis Of A Two-Pole Synchronous Motor With Sleeve And Pressure Dam Bearings, Justin Matthew Garrard May 2014

Rotordynamic Analysis Of A Two-Pole Synchronous Motor With Sleeve And Pressure Dam Bearings, Justin Matthew Garrard

Masters Theses

A two-pole synchronous motor was recently rewound for the von Karman Gas Dynamics facility at Arnold Engineering Development Complex, Arnold Air Force Base, Tennessee. After installing the rewound rotor, unexpected vibration amplitudes were recorded during motor checkouts. To resolve this issue, an investigation was initiated to investigate the causes of the vibration issues. The investigation discovered that the original design used sleeve bearings rather than pressure dam bearings. A study was formed to determine the effect of changing the pressure dam bearings back to sleeve bearings. Because only one spare bearing shell existed, the bearing with the highest vibration amplitudes …


Micromechanical Studies Of Intergranular Strain And Lattice Misorientation Fields And Comparisons To Advanced Diffraction Measurements, Lili Zheng Dec 2011

Micromechanical Studies Of Intergranular Strain And Lattice Misorientation Fields And Comparisons To Advanced Diffraction Measurements, Lili Zheng

Doctoral Dissertations

Inhomogeneous deformation fields arising from the grain-grain interactions in polycrystalline materials have been evaluated using a crystal plasticity finite element method and extensively compared to neutron diffraction measurements under fatigue crack growth conditions. The roles of intergranular deformation anisotropy, grain boundary damage, and non-common deformation mechanisms (such as twinning for hexagonal close packed crystals) are systematically evaluated. The lattice misorientation field can be used to determine the intragranular deformation behavior in polycrystals or to describe the deformation inhomogeneity due to dislocation plasticity in single crystals. The study of indentation-induced lattice misorientation fields in single crystals sheds lights on the understanding …


Use Of A Press-Fit Grip Sleeve For Cable-In-Conduit Superconductor Integration: Effects Of Tensile And Fatigue Loading, Paul Michael Hayes Dec 2010

Use Of A Press-Fit Grip Sleeve For Cable-In-Conduit Superconductor Integration: Effects Of Tensile And Fatigue Loading, Paul Michael Hayes

Masters Theses

Presently, one of the most promising sources for a future of abundant, low-emission, and efficient energy comes in the form of nuclear fusion. However, in order for it to become a reality, fusion technology must overcome the obstacle of plasma confinement. Utilizing the tokomak based design for magnetic plasma confinement; ITER is currently developing a fusion reactor to prove its commercial viability.

The purpose of this research was to determine the feasibility of pulling toroidal field cable with a press-fit grip sleeve that utilizes friction to generate a gripping force. Such a design is being considered by ITER to integrate …


Effect Of Moisture Absorption On The Sinter Quality Of Central Solenoid (Cs) Coil Pack, Zeshaan Sher Mohammed Dec 2010

Effect Of Moisture Absorption On The Sinter Quality Of Central Solenoid (Cs) Coil Pack, Zeshaan Sher Mohammed

Masters Theses

Fusion energy has been said to be the solution to all the world’s energy problems. The International Thermonuclear Experimental Reactor (ITER) is the flagship project to demonstrate the feasibility of fusion energy. The Central Solenoid (CS), an important component of the reactor, is needed to induce plasma current, initiate, ramp-up, ramp-down, and sustain plasma in a very controlled manner. In order to achieve this, the CS coil packs must be manufactured under controlled conditions. The CS conductor is an advanced cable-in-conduit Nb3Sn superconductor. The CS cable will be made in long continuous sections but with thousands of meter of cable …


Thermal, Magnetic, And Mechanical Stresses And Strains In Copper/Cyanate Ester Cylindrical Coils – Effects Of Variations In Fiber Volume Fraction, Chance Thomas Donahue Aug 2010

Thermal, Magnetic, And Mechanical Stresses And Strains In Copper/Cyanate Ester Cylindrical Coils – Effects Of Variations In Fiber Volume Fraction, Chance Thomas Donahue

Masters Theses

Several problems must be solved in the construction, design, and operation of a nuclear fusion reactor. One of the chief problems in the manufacture of high-powered copper/polymer composite magnets is the difficulty to precisely control the fiber volume fraction. In this thesis, the effect of variations in fiber volume fraction on thermal stresses in copper/cyanate ester composite cylinders is investigated. The cylinder is a composite that uses copper wires that run longitudinally in a cyanate ester resin specifically developed by Composite Technology Development, Inc. This composite cylinder design is commonly used in magnets for nuclear fusion reactors. The application of …


The Analysis Of Cantilever Plates With Concentrated Loads, Constant Roberts Marks Aug 1941

The Analysis Of Cantilever Plates With Concentrated Loads, Constant Roberts Marks

Masters Theses

(From the Introduction)

The problem of a cantilever plate or slab with variable, discontinuous, concentrated, or eccentric loading occurs frequently in engineering design. Examples are substructure walls, piers, projecting floor slabs, and gear teeth. The solution of most of these problems can be made to depend on the analysis of the plate in question loaded with one or more concentrated loads. Such analyses are available for only a few cases of loading, and no practical method is available to the designer for making any kind of a reasonably accurate stress analysis for many cases he may encounter.

In …