Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Microfluidics

Chemistry

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Development Of Microdialysis Probes In Series Approach Toward Eliminating Microdialysis Sampling Calibration: Miniaturization Into A Pdms Microfluidic Device, Randy Espinal Cabrera May 2018

Development Of Microdialysis Probes In Series Approach Toward Eliminating Microdialysis Sampling Calibration: Miniaturization Into A Pdms Microfluidic Device, Randy Espinal Cabrera

Graduate Theses and Dissertations

A new microdialysis sampling method and microfluidic device were developed in vitro. The method consisted of using up to four microdialysis sampling probes connected in series to evaluate the relative recovery (RR) of different model solutes methyl orange, fluorescein isothiocyanate (FITC)-dextran average mol. wt. 4,000 (FITC-4), FITC-10, FITC-20, and FITC-40. Different flow rates (0.8, 1.0, and 1.5 µL/min) were used to compare experimentally observed relative recoveries with theoretical estimations. With increasing the number of probes in series, the relative recovery increases and ~100% (99.7% ± 0.9%) relative recovery for methyl orange was obtained. For larger molecules such as fluorescein isothiocyanate …


Factors Affecting Redox Magnetohydrodynamics For Flow In Small Volumes, Matthew D. Gerner Aug 2009

Factors Affecting Redox Magnetohydrodynamics For Flow In Small Volumes, Matthew D. Gerner

Graduate Theses and Dissertations

Lab-on-a-chip technologies offer the possibility of developing analytical devices that are low-cost, portable, disposable, fast, and operable by non-technical personnel. Such devices require automated methods to manipulate ultra-small volumes (picoliters) of samples and solution, including pumping, stirring, and positioning. Current methods for ultra-small volume microfluidics have limitations that restrict their use including high voltage requirements, disadvantageous flow profiles or rates, and relatively complicated fabrication due to mechanical parts. Redox magnetohydrodyanmics (RMHD) that utilizes permanent magnets for portability shows promise as a micropump with ease of switching flow direction, no moving parts, compatibility with both aqueous and non-aqueous solutions, low voltages …