Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 61 - 85 of 85

Full-Text Articles in Mechanical Engineering

High-Throughput Mechanical Characterization Methods For Composite Electrodes And In-Situ Analysis Of Li-Ion Batteries, Luize Scalco De Vasconcelos Aug 2016

High-Throughput Mechanical Characterization Methods For Composite Electrodes And In-Situ Analysis Of Li-Ion Batteries, Luize Scalco De Vasconcelos

Open Access Theses

Electrodes in commercial rechargeable batteries are microscopically heterogeneous materials. The constituents often have large variation in their mechanical properties, making the characterization process a challenging task. In addition, the mechanical properties and mechanical behaviors of electrodes are closely coupled with the electrochemical processes of lithium insertion and extraction. There is an urgent need to develop an experimental platform to characterize the chemomechanical response of electrodes under the in-situ conditions of charge and discharge.

In the first part of this thesis, instrumented grid indentation is employed to determine the elastic modulus and hardness of the constituent phases of a composite cathode. …


Test Cell Set-Up To Enable Drive-Cycle Testing Of A Variable Valve Actuation Enabled Camless Diesel Engine, Alexander Harrison Taylor Aug 2016

Test Cell Set-Up To Enable Drive-Cycle Testing Of A Variable Valve Actuation Enabled Camless Diesel Engine, Alexander Harrison Taylor

Open Access Theses

The previous facility which was used for engine testing at Purdue's Ray W. Herrick Laboratories utilized an eddy current dynamometer which is only suited for steady-state testing and throttle snaps. To better utilize a pre-existing camless diesel engine, which is is enabled via variable valve actuation, it was desired to perform transient drive-cycle tests. To accomplish this goal, a variable frequency drive AC dynamometer was required. Given that a brand new facility was constructed, the team was presented with an opportunity for ground up design of a test cell.

The new test cell's operation was proved out using a cammed …


Investigation Of Small-Scale Thermal Recovery And Storage Systems, Suvhashis Thapa Jul 2016

Investigation Of Small-Scale Thermal Recovery And Storage Systems, Suvhashis Thapa

Doctoral Dissertations

An approach to recover and store waste heat is presented in this dissertation. The waste heat is the energy that is rejected to the environment without being put to practical use and it is a result of both equipment inefficiency and thermodynamic limitation on the equipment and the process. In a typical Otto cycle, for instance, out of the total energy consumed by the system, only one-third of the energy is converted into useful work and the rest is discharged in the environment as waste heat [1]. For a spark ignition, a 1.4 liters internal combustion engine with the thermal …


Experimental Investigation And Numerical Simulation Of A Copper Micro-Channel Heat Exchanger With Hfe-7200 Working Fluid, Eric Borquist Jul 2016

Experimental Investigation And Numerical Simulation Of A Copper Micro-Channel Heat Exchanger With Hfe-7200 Working Fluid, Eric Borquist

Doctoral Dissertations

Ever increasing cost and consumption of global energy resources has inspired the development of energy harvesting techniques which increase system efficiency, sustainability, and environmental impact by using waste energy otherwise lost to the surroundings. As part of a larger effort to produce a multi-energy source prototype, this study focused on the fabrication and testing of a waste heat recovery micro-channel heat exchanger. Reducing cost and facility requirements were a priority for potential industry and commercial adoption of such energy harvesting devices. During development of the micro-channel heat exchanger, a new fabrication process using mature technologies was created that reduced cost, …


Design Of Three-Dimensional Near-Zero Refractive Index Metamaterials, David Flores Iii May 2016

Design Of Three-Dimensional Near-Zero Refractive Index Metamaterials, David Flores Iii

Theses and Dissertations

Near-zero refractive index metamaterials exhibit remarkable electromagnetic properties which can and will be applied in the near future. From the known methods of achieving near-zero refractive index, this work primarily focuses on the design of 3D metamaterials whose permittivity and permeability are both close to zero while maintaining relatively low loss factor. The design of the metamaterials is based on the chiral shape “omega” and designed to weave periodically as a fishnet. Theoretical analysis, computer modeling and simulation are steps taken in the design of metamaterials. A computational tool based on the robust method for effective parameter extraction is successfully …


Graphene-Based Nanomaterials For Hydrogen Generation And Storage, Lin Wei May 2016

Graphene-Based Nanomaterials For Hydrogen Generation And Storage, Lin Wei

Theses and Dissertations

Hydrogen energy is promising candidate to replace fossil fuel. However, the usage of hydrogen energy was greatly limited due to its generation and storage. In this thesis report, the author synthesized novel metal/carbon nanomaterials used for the hydrogen storage and hydrogen evolution reaction. These materials were characterization by XRD, Raman, XPS, SEM, EDX, etc. And the surface area and the hydrogen storage properties were tested by ASAP 2020, using the BET measurement and hydrogen isotherm curves to discuss the gas adsorption properties. As for hydrogen evolution reaction, the materials were made into electrodes and tested with LSV, CV to shows …


Thermal Conductivity Measurements Of Nanomaterials, Javier Acosta Martinez May 2016

Thermal Conductivity Measurements Of Nanomaterials, Javier Acosta Martinez

Theses and Dissertations

Thermal conductivity “k” can be defined as a material property where heat is diffused due to a temperature gradient within the material. Among the applications for thermal conductivity are: thermoelectrics, thermal interface materials, thin films, insulation, among many others. A study was made to compare the different types of studies of thermal conductivity of nanomaterials, as well as, a comparison among the different types of setups used to measure thermal conductivity. For this study a custom made thermal conductivity tester was built, this tester was validated by measuring materials with both low and high thermal conductivity, and comparing the results …


Nonlinear Dynamics Of Electrostatically Actuated Nanotweezers, Bin Liu May 2016

Nonlinear Dynamics Of Electrostatically Actuated Nanotweezers, Bin Liu

Theses and Dissertations

Bin Liu, Nonlinear Dynamics of Electrostatically Actuated Nanotweezers. Master of Science (MS), May 2016, 77 pp, 6 tables, 59 figures, references, 25 titles. The amplitude-frequency response of electrostatic nanotube nanotweezer device system is investigated; soft alter current was setting at near half natural frequency impulse on nanotubes which are referred to as two arms, parametric and primary resonances will be shown in the results, respectively. Firstly we are using the Method of Multiple Scales (MMS) analytical model; results will be compared with Reduced Order Model (ROM). By variation and comparison of multiple parameters including van der wall molecular forces, electrostatic …


Ultra-Thin Boron Nitride Films By Pulsed Laser Deposition: Plasma Diagnostics, Synthesis, And Device Transport, Nicholas Robert Glavin Apr 2016

Ultra-Thin Boron Nitride Films By Pulsed Laser Deposition: Plasma Diagnostics, Synthesis, And Device Transport, Nicholas Robert Glavin

Open Access Dissertations

This work describes, for the first time, a pulsed laser deposition (PLD) technique for growth of large area, stoichiometric ultra-thin hexagonal and amorphous boron nitride for next generation 2D material electronics. The growth of boron nitride, in this case, is driven by the high kinetic energies and chemical reactivities of the condensing species formed from physical vapor deposition (PVD) processes, which can facilitate growth over large areas and at reduced substrate temperatures. The use of optical emission spectroscopy during plasma growth provides insight into chemistry, kinetic energies, time of flight data, and spatial distributions within a PVD plasma plume ablated …


Preliminary Design Tools In Turbomachinery: Non-Uniformly Spaced Blade Rows, Multistage Interaction, Unsteady Radial Waves, And Propeller Horizontal-Axis Turbine Optimization, Yujun Leng Apr 2016

Preliminary Design Tools In Turbomachinery: Non-Uniformly Spaced Blade Rows, Multistage Interaction, Unsteady Radial Waves, And Propeller Horizontal-Axis Turbine Optimization, Yujun Leng

Open Access Dissertations

Turbomachinery flow fields are inherently unsteady and complex which makes the related CFD analyses computationally intensive. Physically based preliminary design tools are desirable for parametric studies early in the design stage, and to provide deep physical insight and a good starting point for the later CFD analyses. Four analytical/semi-analytical models are developed in this study: 1) a generalized flat plate cascade model for investigating the unsteady aerodynamics of a blade row with non-uniformly spaced blades; 2) a multistage interaction model for investigating rotor-stator interactions; 3) an analytical solution for quantifying the impeller wake convection and pressure wave propagating between a …


Multi-Axial Failure Of High-Performance Fiber During Transverse Impact, Matthew C. Hudspeth Apr 2016

Multi-Axial Failure Of High-Performance Fiber During Transverse Impact, Matthew C. Hudspeth

Open Access Dissertations

The effect of projectile nose geometry on ensuing wave development in high-performance yarns is explored during single yarn transverse impact. Special attention has been placed on visualizing the immediate region around the projectile-yarn contact site for 0.30-cal round, 0.30-cal fragment simulation projectiles (FSP), and razor blades using high-speed imaging. Kevlar® KM2, Dyneema®SK76 and AuTx have been impacted at velocities ranging from ∼100 m/s to ∼1200 m/s depending on projectile nose shape, with an emphasis set on determining the critical velocity wherein below said velocity significant development of wave propagation occurs and above said velocity the yarn fails immediately upon impact. …


Utilizing Tunable Signal Interference Control Topologies With Electromechanical Resonators, Bryce A. Geesey Apr 2016

Utilizing Tunable Signal Interference Control Topologies With Electromechanical Resonators, Bryce A. Geesey

Open Access Theses

Exploiting knowledge gained from previous investigations of channelized and trans-versal filters, signal interference filters use transmission line differences to generate transmission zeros through phase-shifted combinations of signals at the output of a device. The transmission lines used in these circuits are straightforward to design, but are limited to high-frequency signals (on the order of a few gigahertz) due to the necessity for spatial compactness and low loss. More recent studies have used electromechanical resonators to achieve phase shifting and quality factor improvements at slightly-lower frequencies. These concepts may prove useful if extended to micro- and nanoscale resonators.

To explore signal …


Mixed Mesh/Nodal Magnetic Equivalent Circuit Modeling Of A Six-Phase Claw-Pole Automotive Alternator, Daniel C. Horvath Apr 2016

Mixed Mesh/Nodal Magnetic Equivalent Circuit Modeling Of A Six-Phase Claw-Pole Automotive Alternator, Daniel C. Horvath

Open Access Theses

Magnetic equivalent circuits (MECs) have been employed by many researchers to model the relationship between magnetic flux and current in electromagnetic systems such as electric machines, transformers and inductors [1] ,[2]. Magnetic circuits are analogous to electric circuits where voltage, current, resistance and conductance are the respective counterparts of magneto-motive force (MMF), magnetic flux, reluctance and permeance. The solution of MECs can be accomplished with the plethora of techniques developed for electrical circuit analysis. Specifically, mesh analysis, based on Kirchoff’s Voltage Law (KVL), and nodal analysis, based on Kirchoffs Current Law (KCL), are two very common solution techniques. Once an …


Modifications To Johanson's Roll Compaction Model For Improved Relative Density Predictions, Yu Liu Apr 2016

Modifications To Johanson's Roll Compaction Model For Improved Relative Density Predictions, Yu Liu

Open Access Theses

Johanson’s roll compaction model [J.R. Johanson, A rolling theory for granular solids, ASME Journal of Applied Mechanics E32 (1965) 842–848] is modified to improve its predictions of a compacted ribbon’s relative density. Previous work has shown that the maximum roll pressure and ribbon relative density predicted by the Johanson model are not only larger than those predicted from finite element method (FEM) simulations, but also unphysical in some cases. This over-prediction is due to a one-dimensional flow assumption in the Johanson model. Real powder velocity profiles within a roll compactor are non-uniform.

Johanson’s analysis is modified in this work to …


The Effect Of Confinement On The Development Of An Axisymmetric Wall Jet In Confined Jet Impingement, Tianqi Guo Apr 2016

The Effect Of Confinement On The Development Of An Axisymmetric Wall Jet In Confined Jet Impingement, Tianqi Guo

Open Access Theses

Impinging jets have been widely used in the industry for cooling, heating, drying and many other purposes due to their excellent level of mass and heat transfer capacities. When issued into a confinement gap fully filled with working liquid, which is a typical configuration for the compact cooling devices designed to handle the extremely high heat fluxes generated by continuously working electronic components, they are classified as submerged confined impingement jets. Though the complicated flow field induced by the jet has attracted enormous amount of research efforts from heat transfer as well as fluid dynamics points of view, many key …


Capacity Optimization Of Battery-Generator Hybrid Power System: Toward Minimizing Maintenance Cost In Expeditionary Basecamp/Operational Energy Applications, Jude C. Onwuanumkpe Apr 2016

Capacity Optimization Of Battery-Generator Hybrid Power System: Toward Minimizing Maintenance Cost In Expeditionary Basecamp/Operational Energy Applications, Jude C. Onwuanumkpe

Open Access Theses

Low and transient load condition are known to have deleterious impact on the efficiency and health of diesel generators (DGs). Extensive operation under such loads reduces fuel consumption and energy conversion efficiency, and contribute to diesel engine degradation, damage, or catastrophic failure. Non-ideal loads are prevalent in expeditionary base camps that support contingency operations in austere environments or remote locations where grid electricity is either non-existent or inaccessible. The impact of such loads on DGs exacerbates already overburdened basecamp energy logistics requirements. There is a need, therefore, to eliminate or prevent the occurrence of non-ideal loads. Although advances in diesel …


Analysis Of Body Force Effects On Flow Boiling And Condensation With Finite Inlet Quality, Lucas E. O'Neill Apr 2016

Analysis Of Body Force Effects On Flow Boiling And Condensation With Finite Inlet Quality, Lucas E. O'Neill

Open Access Theses

This study explores flow boiling pressure drop of FC-72 in a rectangular channel subjected to single-side and double-sided heating for vertical upflow, vertical downflow, and horizontal flow with positive inlet quality. Analysis of temporal records of pressure transducer signals is used to assess the influences of orientation, mass velocity, inlet quality, heat flux, and single-sided versus double-sided heating on magnitude of pressure drop oscillations, while fast Fourier transforms of the same records are used to capture dominant frequencies of oscillations. Time-averaged pressure drop results are also presented, with trends focusing on the competing influences of body force and flow inertia, …


Secondary Atomization Of Inelastic Non-Newtonian Liquid Drops In The Bag And Multimode Regimes, Jonathan Rocha Apr 2016

Secondary Atomization Of Inelastic Non-Newtonian Liquid Drops In The Bag And Multimode Regimes, Jonathan Rocha

Open Access Theses

Secondary atomization of inelastic shear thinning non-Newtonian liquids in the bag and multimode regimes was studied. Six mixtures were formulated from deionized (DI) water, Avantor Performance Materials' USP grade 100% vegetable based glycerin, and Ashland's Carboxymethylcellulose (CMC-7MF or CMC-7HF). The resulting solutions had power law parameters flow behavior index, n, between 0.71 and 0.93 and consistency index, K, in the range of 0.0464 to 0.37 Pa·s n. The effective viscosity for each mixture was estimated using the power-law model and experimentally measured strain rates up to the initiation time.

Secondary atomization was achieved using a continuous jet setup. Breakup events …


Characterization Of Pool Boiling Heat Transfer From Porous-Coating-Enhanced Surfaces, Suchismita Sarangi Apr 2016

Characterization Of Pool Boiling Heat Transfer From Porous-Coating-Enhanced Surfaces, Suchismita Sarangi

Open Access Dissertations

Development of techniques for enhancement and optimization of thermal management technologies has been a highly active area of research in recent decades in response to the rapid emergence of compact, high-power electronic systems. Immersion cooling by boiling is one of the preferred methods for high power density applications, due to its passive nature and high heat transfer coefficients obtained. Pool boiling heat transfer has been extensively studied in recent decades to understand the inherent mechanisms yielding the high heat transfer rates, as well as to further enhance the heat transfer by simple modifications or additions to existing approaches. This thesis …


Transportation And Power Solutions For Africa: The Assessment And Optimization Of The Purdue Utility Platform, Jeremy Patrick Robison Apr 2016

Transportation And Power Solutions For Africa: The Assessment And Optimization Of The Purdue Utility Platform, Jeremy Patrick Robison

Open Access Theses

The Purdue Utility Platform (PUP) is an off-road utility vehicle that was created to improve agricultural productivity in sub-Saharan Africa by providing appropriate transportation and mobile power solutions. The vehicle design has matured to a level where it now requires more robust engineering tools to perform a rigorous assessment of its function. The assessment will be pursued in two areas: durability of the frame and the roll stability of the vehicle. To assess the durability of the frame, a data acquisition system was installed to collect strain gauge information during the vehicle’s operation. This data was then related to an …


Analytical And Experimental Investigation Of Microstructural Alterations In Bearing Steel In Rolling Contact Fatigue, Sina Mobasher Moghaddam Mar 2016

Analytical And Experimental Investigation Of Microstructural Alterations In Bearing Steel In Rolling Contact Fatigue, Sina Mobasher Moghaddam

Open Access Dissertations

Rolling Contact Fatigue (RCF) is one the most common failure modes in bearings. RCF is usually associated with particular microstructural alterations. Such alterations (i.e. white etching cracks, butterflies, etc.) which lead to RCF failure are known to be among the most concerning matters to bearing industry.

In the current work, an analytical as well as experimental approaches are used to investigate “butterfly wing” formation, crack initiation and propagation from inclusions. A new damage evolution equation coupled with a FE model is employed to account for the effect of mean stresses and alternating stresses simultaneously to investigate butterfly formation. The proposed …


Analytical Investigation Of Fretting Wear With Special Emphasis On Stress Based Models, Arnab Jyoti Ghosh Mar 2016

Analytical Investigation Of Fretting Wear With Special Emphasis On Stress Based Models, Arnab Jyoti Ghosh

Open Access Dissertations

Fretting refers to the minute oscillatory motion between two surfaces in contact under an applied normal load. It can cause either surface or subsurface initiated failure resulting in either fatigue or wear or both. Two distinct regimes – partial slip and gross slip are typically observed in fretting contacts. Due to the nature of contact, various factors such as wear debris, oxidation, surface roughness, humidity etc. effect failures caused due to fretting. A number of different techniques have been developed to quantify fretting damage and several numerical models are proposed to predict damage due to fretting. Fretting wear also depends …


A Study On Flow Development In An Apu-Style Inlet And Its Effect On Centrifugal Compressor Performance, Fangyuan Lou Mar 2016

A Study On Flow Development In An Apu-Style Inlet And Its Effect On Centrifugal Compressor Performance, Fangyuan Lou

Open Access Dissertations

The objectives of this research were to investigate the flow development inside an APU-style inlet and its effect on centrifugal compressor performance. The motivation arises from the increased applications of gas turbine engines installed with APU-style inlets such as unmanned aerial vehicles, auxiliary power units, and helicopters. The inlet swirl distortion created from these complicated inlet systems has become a major performance and operability concern. To improve the integration between the APU-style inlet and gas turbine engines, better understanding of the flow field in the APU-style inlet and its effect on gas turbine is necessary.

A research facility for the …


Analysis And Simulation Of Small Scale Microwave Interferometer Experiments On Non-Ideal Explosives, David E. Kittell Feb 2016

Analysis And Simulation Of Small Scale Microwave Interferometer Experiments On Non-Ideal Explosives, David E. Kittell

Open Access Dissertations

Small scale experiments for non-ideal and homemade explosives (HMEs) were investigated, analyzed, and subsequently modeled in an attempt to develop more predictive capabilities for the threat assessment of improvised explosive devices (IEDs), as well as to provide new analysis capabilities for other investigators in the field. Non-ideal explosives and HMEs are challenging to characterize because of the nearly limitless parameter space (e.g. sample composition, density, particle morphology, etc.) which gives rise to a broad range of explosive sensitivity and performance. Large scale tests, such as rate stick and gap tests, are not feasible for characterizing every HME of interest due …


Kinetic Energy Harvesting Mechanism For Vortex Drop Structures, Mungtra Chusilp Jan 2016

Kinetic Energy Harvesting Mechanism For Vortex Drop Structures, Mungtra Chusilp

Doctoral Dissertations

Energy recovery from wastewater is gaining significance as utilities work toward achieving energy neutrality and sustainability in their wastewater collection and treatment systems. In this dissertation, kinetic energy harvesting mechanism for vortex drop structures found within the municipal waste and storm water conveyance systems is presented. There are thousands of sewer drop structures installed across the U.S. carrying billions of gallons of sewage each year. A custom micro water turbine is developed in this research which could be retrofitted within the existing drop shafts to harvest the excessive kinetic energy available. This dissertation presents the conceptual design and analysis of …