Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Composite

Discipline
Institution
Publication Year
Publication

Articles 1 - 30 of 68

Full-Text Articles in Mechanical Engineering

Multiscale Modeling And Gaussian Process Regression For Applications In Composite Materials, Joshua Arp Aug 2023

Multiscale Modeling And Gaussian Process Regression For Applications In Composite Materials, Joshua Arp

All Dissertations

An ongoing challenge in advanced materials design is the development of accurate multiscale models that consider uncertainty while establishing a link between knowledge or information about constituent materials to overall composite properties. Successful models can accurately predict composite properties, reducing the high financial and labor costs associated with experimental determination and accelerating material innovation. Whereas early pioneers in micromechanics developed simplistic theoretical models to map these relationships, modern advances in computer technology have enabled detailed simulators capable of accurately predicting complex and multiscale phenomena.

This work advances domain knowledge via two means: firstly, through the development of high-fidelity, physics-based finite …


Optimized 3d-Printing Of Carbon Fiber-Reinforced Polyether-Ether-Ketone (Cfr-Peek) For Use In Overmolded Lattice Composite, Ryan C. Ogle Dec 2022

Optimized 3d-Printing Of Carbon Fiber-Reinforced Polyether-Ether-Ketone (Cfr-Peek) For Use In Overmolded Lattice Composite, Ryan C. Ogle

Masters Theses

Current orthopedic implants are overwhelmingly composed from metallic materials. These implants show superior mechanical properties, but this can additionally result in stress shielding due to a modulus mismatch between the bone tissue and implanted device. Polymeric implants reduce this stress shielding effect but have much lower mechanical properties, limiting their use. Polylactic acid (PLA) is a widely used biodegradable thermoplastic polymer, however, its use has been limited by the polymer’s mechanical properties and rapid loss of strength during degradation in vivo. Polyether-ether-ketone (PEEK) is another common biocompatible polymer , with chemical and mechanical properties which make it a popular alternative …


Joining Methods For Continuous Fiber Reinforced Thermoplastic Composites In Structural Applications, Andrew Moran May 2022

Joining Methods For Continuous Fiber Reinforced Thermoplastic Composites In Structural Applications, Andrew Moran

Electronic Theses and Dissertations

Continuous fiber reinforced thermoplastic (CFRTP) composites have been proposed as an alternative to metals in structural applications. CFRTP composites can be used to create structures that are lighter weight, have better resistance to environmental factors, and have the potential to be recycled. However, one of the main challenges to CFRTP composites is connections between structural members. The goal of this thesis is to investigate the feasibility of joining CFRTP composites to both similar and dissimilar materials through literature review, coupon testing, design of a structural joint, and a small scale laboratory prototype of the joint. To achieve this goal the …


Carbon Fiber Coil Spring Characterization And Manufacturing, Cooper Madrazo May 2022

Carbon Fiber Coil Spring Characterization And Manufacturing, Cooper Madrazo

UNLV Theses, Dissertations, Professional Papers, and Capstones

Helical coil springs are used in many mechanical design applications including industrial machines, devices, and vehicle suspension systems. It is desirable to minimize the weight of vehicle suspension systems as this can improve performance and handling. Most vehicle suspension coil springs are made from solid steel alloys or other metallic materials. Significant weight savings could be achieved if the metallic material were replaced by high performance fiber reinforced polymer composites. However, the coil spring geometry is a difficult manufacturing challenge for composite materials. The goal of this thesis was to investigate efficient and low-cost manufacturing methods to produce light-weight polymer …


Evaluation Of Accelerated Testing Methods To Predict The Effects Of Chemical Exposure On Mechanical Properties Of Polyester Composites In Municipal Wastewater Service, Roberto A. Garcia May 2022

Evaluation Of Accelerated Testing Methods To Predict The Effects Of Chemical Exposure On Mechanical Properties Of Polyester Composites In Municipal Wastewater Service, Roberto A. Garcia

Theses and Dissertations

Composite Access Products (CAP) is a company that is determined to replace traditional steel manhole covers with fiber reinforced polymer alternatives that have similar performance while also introducing several advantages. CAP can achieve this by manufacturing the polymer manhole covers using high-speed, high pressure compressing molding to produce lightweight, long-lasting, corrosive resistant covers. CAP’s composite covers have been approved for use by TXDOT in roadway zones. Despite this, they must now undergo more testing and verification for use in environments with highly corrosive elements such as sewage environments and waste processing plants. In these situations, the polymer manhole covers will …


Design Of Composite Joints Using Machine Learning Approaches, Natalie Richards Jan 2022

Design Of Composite Joints Using Machine Learning Approaches, Natalie Richards

Williams Honors College, Honors Research Projects

Adhesively bonded joints have an advantage in joining dissimilar engineering materials due to their high structural efficiency and being lightweight. These joints are either between two opposite laminates or between a composite laminate and a metal structure. The aerospace and automotive industries have seen an increase in utilizing these adhesive joints in their engineering applications. Joint strength along with the failure mode (adhesive, delamination, etc.) is the most important parameter to evaluate when understanding the capability of the adhesive joint. In this paper, a regression and a classification machine learning (ML) model are utilized to predict the failure load and …


High Performance Electromagnetic Interference Shielding From Lightweight-Flexible Polymer Composite Fiber Structures, Fariha Rubaiya Dec 2021

High Performance Electromagnetic Interference Shielding From Lightweight-Flexible Polymer Composite Fiber Structures, Fariha Rubaiya

Theses and Dissertations

This study focuses on the development and characterization of fiber-based polymer composite structures with the goal of developing high performance, flexible, lightweight, and cost-effective materials for electromagnetic interference shielding and piezoelectricity. Polyvinylidene fluoride (PVDF) was used as the base fiber mat while polyaniline (PANI), polypyrrole (PPY), polyindole (PIN), polydiacetylene (PDA) and Zn2GeO4 (ZGO) were incorporated via solution mixing and in-situ polymerization. The PVDF fine fiber systems were produced using the Forcespinning® method. Morphology, structure, thermal stability, electrical properties, EMI shielding effectiveness and piezoelectric performance of the fiber mats were analyzed. The composite system containing 1.25 wt. % of ZGO-PVDF displayed …


In Situ Characterization Of Fiber-Matrix Interface Debonding Via Full-Field Measurements, Robert Livingston Jun 2021

In Situ Characterization Of Fiber-Matrix Interface Debonding Via Full-Field Measurements, Robert Livingston

Theses and Dissertations

Macroscopic mechanical and failure properties of fiber-reinforced composites depend strongly on the properties of the fiber-matrix interface. For example, transverse cracking behavior and interlaminar shear strength of composites can be highly sensitive to the characteristics of the fiber-matrix interface. Despite its importance, experimental characterization of the mechanical behavior of the fiber-matrix interface under normal loading conditions has been limited. This work reports an experimental approach that uses in situ full-field digital image correlation (DIC) to quantify the mechanical and failure behaviors at the fiber-matrix interface. Single fiber model composite samples are fabricated from a proprietary epoxy embedding a single glass …


Composite Pegboard, Asa J. Cusick, Luis Corrales, Joelle Hylton, Wyatt Pauley Jun 2021

Composite Pegboard, Asa J. Cusick, Luis Corrales, Joelle Hylton, Wyatt Pauley

Mechanical Engineering

Many of those with mobility limitations who are told they will need a wheelchair for the rest of their lives can actually begin to stand and walk again given the proper tools and support. The current design for a wheelchair seeking to support this process is overly complex, heavy, and exhibits some features that could potentially pose a serious health hazard to those using it. The scope of this project is to aid in the design of an adaptable composite wheelchair frame that can be both lightweight and strong, while still allowing for physical diversity of potential users. Through research …


Prediction Of In-Plane Stiffnesses And Thermomechanical Stresses In Cylindrical Composite Cross-Sections, Bryson M. Chan Jun 2021

Prediction Of In-Plane Stiffnesses And Thermomechanical Stresses In Cylindrical Composite Cross-Sections, Bryson M. Chan

Master's Theses

Accurate mechanical analysis of composite structures is necessary for the prediction of laminate behavior. Cylindrical composite tubes are a mainstay in many structural applications. The fundamental design of circular composite cross-sections necessitates the development of a comprehensive composite lamination theory. A new analytical method is developed to characterize the behavior of thin-walled composite cylindrical tubes using a modified plate theory. A generated numerical solver can predict properties such as axial stiffness, bending stiffness, layer stresses, and layer strains in composite tubes subjected to combined mechanical loading and thermal effects. The model accounts for the curvature by transforming and translating the …


3d Printing Of Hybrid Architectures Via Core-Shell Material Extrusion Additive Manufacturing, Robert Cody Pack May 2021

3d Printing Of Hybrid Architectures Via Core-Shell Material Extrusion Additive Manufacturing, Robert Cody Pack

Doctoral Dissertations

Biological materials often employ hybrid architectures, such as the core-shell motif present in porcupine quills and plant stems, to achieve unique properties and performance. Drawing inspiration from these natural materials, a new method to fabricate lightweight and stiff core-shell architected filaments is reported. Specifically, a core-shell printhead conducive to printing highly loaded fiber-filled inks, as well as a new low-density syntactic foam ink, are utilized to 3D-print core-shell architectures consisting of a syntactic epoxy foam core surrounded by a stiff carbon fiber-reinforced epoxy composite shell. Effective printing of test specimens and structures with controlled geometry, composition, and architecture is demonstrated …


Evaluation Of Warpage For Composite Automotive Components, Eric J. Martin Oct 2020

Evaluation Of Warpage For Composite Automotive Components, Eric J. Martin

Electronic Thesis and Dissertation Repository

Thermoplastic composite parts are manufactured using compression molding for the purposes of assembly in a car seat sub-assembly. Concerns about the dimensional accuracy of the parts prompted an investigation into the part warpage. The warpage of the parts needs to be evaluated for the purposes of determining processing conditions which are linked to part warpage, in order to reduce part warpage.

Laser line probes (LLP) are becoming a more attractive tool for the purposes of part inspection. LLPs quickly acquire point cloud data from complex surfaces and are a non-contact method of measurement; these qualities make LLPs the best tool …


Compaction And Residual Stress Modeling In Composite Manufactured With Automated Fiber Placement, Von Clyde Jamora Apr 2020

Compaction And Residual Stress Modeling In Composite Manufactured With Automated Fiber Placement, Von Clyde Jamora

Mechanical & Aerospace Engineering Theses & Dissertations

Automated fiber placement is a state-of-the-art manufacturing process that allows for complex layup patterns and can quickly place, cut, and restart composite tows. However, with this type of manufacturing process layup defects are inevitable, and manufacturing defects propagate after curing. Process modeling is the considered approach for exploring the defect prediction. Two different but related works were conducted, which are the thermochemical and hyperelastic model and the residual deformation model. For the model before cooling, a hyperelastic model and a thermo-chemical were made to simulate the compaction and heat transfer. Temperature dependent properties that are a function of degree of …


Jcati Composite Delaminator, Payden Coffman Jan 2020

Jcati Composite Delaminator, Payden Coffman

All Undergraduate Projects

Improvements need to be made to the existing delaminator system designed to crush proprietary Boeing 777 composite material. The current design incorporates a hydraulic system to achieve the high loads needed to separate material layers. The new system will need to be able to apply the same loads while at the same time allowing for a constant feed of material through the system. To achieve this, a “gear-like” crushing system will be implemented that will apply a high enough radial load into the material that will achieve delamination equal or greater than the previous design while at the same time …


Characterization Of Local Void Content In Carbon Fiber Reinforced Plastic Parts Utilizing Observation Of In Situ Fluorescent Dye Within Epoxy, Wyatt Young Warner Dec 2019

Characterization Of Local Void Content In Carbon Fiber Reinforced Plastic Parts Utilizing Observation Of In Situ Fluorescent Dye Within Epoxy, Wyatt Young Warner

Theses and Dissertations

Experimentation exploring the movement of voids within carbon fiber reinforced plastics was performed using fluorescent dye infused into the laminates observed through a transparent mold under ultraviolet light. In situ photography was used as an inspection method for void content during Resin Transfer Molding for these laminates. This in situ inspection method for determining the void content of composite laminates was compared to more common ex-situ quality inspection methods i.e. ultrasonic inspection and cross-section microscopy. Results for localized and total void count in each of these methods were directly compared to test samples and linear correlations between the three test …


High Enthalpy Storage Thermoset Network With Giant Stress And Energy Output In Rubbery State And Associated Applications, Jizhou Fan Jul 2019

High Enthalpy Storage Thermoset Network With Giant Stress And Energy Output In Rubbery State And Associated Applications, Jizhou Fan

LSU Doctoral Dissertations

In this study, a new shape memory thermoset network with giant stress and energy output in rubbery state is synthesized and studied firstly since the low output in stress and energy in rubbery state has been a bottleneck for wide-spread applications of thermoset shape memory polymers (SMPs). Traditionally, stress or energy storage in thermoset network is through entropy reduction by mechanical deformation or programming. We here report another mechanism for energy storage, which stores energy primarily through enthalpy increase by stretched bonds during programming. As compared to entropy-driven counterparts, which usually have a stable recovery stress from tenths to several …


Design Of Natural Composite I-Beam For Sampe 2019, Brian Harkness Jun 2019

Design Of Natural Composite I-Beam For Sampe 2019, Brian Harkness

Honors Theses

In recent years, the demand for high performance, lightweight, fiber-reinforced composites have grown substantially. Fiberglass and carbon fiber have exemplary material properties that meet the demand and have set the industry standard for performance materials. Although these materials meet their design function, they suffer from high environmental impacts throughout their life cycle and are not cost effective to produce. Flax fiber composites have comparable properties to fiberglass but can be produced more efficiently and production requires much less energy consumption. Flax is a readily available, renewable material that will easily biodegrade once it is the end of its useful life …


Effects Of Bio-Composites In Corrugated Sandwich Panels Under Edgewise Compression Loading, Jalen Christopher Mano May 2019

Effects Of Bio-Composites In Corrugated Sandwich Panels Under Edgewise Compression Loading, Jalen Christopher Mano

Master's Theses

Present day composite sandwich panels provide incredible strength. Their largest problem, however, is early bonding failure between the core and the skin. This is due to the low bonding surface area of present cores like honeycomb. Corrugated structures could provide a remedy for this with their much larger bonding surface area. Corrugated structures have extreme mechanical properties deeming them particularly useful in aerospace and automotive applications. However, previous research has shown that the stiffness of carbon fiber causes debonding and drastic failure when used as both a core and a skin. Bio-composites have properties that could strengthen the corrugated sandwich …


Composite Recycler: Frame, Alfonso Olivera Jan 2019

Composite Recycler: Frame, Alfonso Olivera

All Undergraduate Projects

How can composites be recycled? The Composite Recycler is an ongoing project that started in September 2017. The purpose of this project was to create a machine that will delaminate the composites, cut them, and heat them up to separate the resin from the composites so they can be recycled. A group was put together for the 2018-2019 academic year to further the project as a whole improve the operation of the device. The existing base was used as well as the cutter and the power sources. The upgrades included; a housing to support the transport rollers and changing from …


Flexure Properties Of 3d Printed Nylon Carbon Fiber Composite And Stiffness Of 3d Printed Modified Cuttlefish Bone Structure, Shashikanth Reddy Jan 2019

Flexure Properties Of 3d Printed Nylon Carbon Fiber Composite And Stiffness Of 3d Printed Modified Cuttlefish Bone Structure, Shashikanth Reddy

Electronic Theses and Dissertations

Flexure strength is one of the most widely used mechanical properties to represent the mechanical behavior of the composite. Fiber reinforcements increase the flexure strength of a composite. Specifically, there has been tremendous growth in the use of Carbon Fiber (CF) in the manufacturing industry due to its significant contribution to enhance the mechanical properties of a composite. Fiber orientation, void content, bonding between the layers (delamination), and fiber distribution are some of the factors that affect the flexure strength of a reinforced composite. The laminate (composite with reinforced layers) composites, has been a focus of study by researchers from …


Experimental Measurement Of Dielectric Properties Of Powdery Materials Using A Coaxial Transmission Line, Robert Tempke Jan 2019

Experimental Measurement Of Dielectric Properties Of Powdery Materials Using A Coaxial Transmission Line, Robert Tempke

Graduate Theses, Dissertations, and Problem Reports

This study proposes a standard methodology for coaxial dielectric property measurements of powdery materials (1-10GHz) using a coaxial transmission line. Four powdery materials with dielectric constants ranging from 3.5 to 70 (SiO2, Al2O3, CeO2, and TiO2) were experimentally investigated at varying volume loading fractions in a paraffin mixture. A statistically significant number of paraffin heterogeneous-mixtures was synthesized for all dielectric powders. The dielectric properties of the constitutive materials were determined using appropriate mixture equations. The sensitivity of the equations dielectric prediction to volume loading is discussed with guidance on selecting the best mixing equation. It was determined that low volume …


Examination Of Ice Impactor And Mold, Matt Wilson Jan 2019

Examination Of Ice Impactor And Mold, Matt Wilson

Williams Honors College, Honors Research Projects

This research project investigates impact and damage response of composite sandwich structures impacted with solid ice at extreme low-temperature. Composite sandwich structures of carbon fiber reinforced polymer sheets lining a polyvinyl chloride foam core are subjected to low-velocity impact at arctic temperatures. This impact will be delivered by a solid ice tool-tip via a drop impact testing machine. Data and test results acquired will be composed into a research report that will be submitted to The University of Akron and published in a scientific journal. This project builds upon the earlier study by Elamin, Li, & Tan (2018).


Modeling And Simulation Of The Thermoforming Process In Thermoplastic-Matrix Composite Materials, Philip M. Bean Dec 2018

Modeling And Simulation Of The Thermoforming Process In Thermoplastic-Matrix Composite Materials, Philip M. Bean

Electronic Theses and Dissertations

Thermoplastic-matrix composite materials have unique advantages over traditional thermosets including faster processing, improved fracture toughness, and recyclability. These and other benefits have caused increasing interest in the use of these materials in both aerospace and automotive industries. Due to the differences in behavior, these materials require a different type of manufacturing process to thermoset matrix composites. This manufacturing process generally involves using pre manufactured tape-layers. These layers, containing both thermoplastic-matrix and fiber-reinforcement, are aligned to the desired orientation, and stacked up into a “tailored blank” using an automated tape layup machine. They are then heated to the thermoplastic melting temperature …


Reinventing The Wheel, Esther K. Unti, Ahmed Z. Shorab, Patrick B. Kragen, Adam M. Menashe Dec 2018

Reinventing The Wheel, Esther K. Unti, Ahmed Z. Shorab, Patrick B. Kragen, Adam M. Menashe

Mechanical Engineering

Reinventing the Wheel selected tires and designed wheels for the 2018 Cal Poly, San Luis Obispo Formula SAE combustion vehicle. Available tire options were evaluated for steady-state and transient performance as well as vehicle integration. A single-piece composite wheel with hollow spokes was designed to meet stiffness, strength, and tolerance requirements. A detailed study of wheel loading and geometric structural efficiency was performed. Finite element analysis was used to iterate the geometry and laminate. A two-piece male mold was designed and machined to manufacture the wheel. Removable silicone inserts were used to create the hollow spokes.


Engineering Viscoelastic Behavior Of Carbon Fiber Reinforced Polymer Composites With Nanoparticles For Controlling Deployment Of Aerospace Structures, Mark Scherbarth Nov 2018

Engineering Viscoelastic Behavior Of Carbon Fiber Reinforced Polymer Composites With Nanoparticles For Controlling Deployment Of Aerospace Structures, Mark Scherbarth

Mechanical Engineering ETDs

The United States Air Force is focused on reducing mass and power consumption of spacecraft to increase their capabilities for space missions. Low mass and power consumption can be achieved by using composites with low density and high stiffness and utilizing few satellite components. One way to achieve reduced mass is by eliminating attendant deployment mechanisms consuming valuable power and mass allocations on spacecraft with deployable structures. Secondary systems are typically used to assist deployable space structures to ensure 100% success. A passively deployed space structure would be of great value to the Department of Defense and the commercial marketplace. …


Feasibility Of Hybrid Thermoplastic Composite-Concrete Load Bearing System, Camerin M. Seigars Aug 2018

Feasibility Of Hybrid Thermoplastic Composite-Concrete Load Bearing System, Camerin M. Seigars

Electronic Theses and Dissertations

Thermoplastic composites have many advantages over thermoset composites such as being recyclable, rapidly manufacturable, and more impact resistant. The goal of this thesis is to assess the feasibility of using thermoplastic composites in structural applications through literature review, mechanical testing, design of a load-bearing hybrid composite-concrete structures, and the implementation of thermoplastic composites for tensile reinforcement of concrete. The study had four objectives covering the stated goal.

  1. Conduct a literature review to direct thermoplastic material selection
  2. Characterize thermoplastic material mechanical properties using standardized mechanical testing
  3. Design a hybrid composite-reinforced concrete beam, and
  4. Develop thermoplastic shear connectors to develop composite action …


Design Survey Of Laminated Composite I-Beam, Mrinmoy Saha Aug 2018

Design Survey Of Laminated Composite I-Beam, Mrinmoy Saha

All Graduate Plan B and other Reports, Spring 1920 to Spring 2023

Composite I-beams are popular for high-strength low-weight applications. Learning the macro-mechanics and designing the composite I-beam properly are necessary. In this report, a design overview of the composite I-beam is discussed which is based on classical lamination theory where it includes the homogenization approach, the plane stress assumption and the Kirchhoff hypothesis. Using these assumptions, a method was developed to come up with the effective material properties of a beam. Formulas to calculate maximum deflection and maximum bending stress and shear stress and the stress concentration at the connection of web-flange are discussed which describe ways for designing and manufacturing …


Composite Suspension For A Mass Market Vehicle, Sarah M. Chapiama, Brian Auyeung, Jose Guerrero, Ethan Lau Jun 2018

Composite Suspension For A Mass Market Vehicle, Sarah M. Chapiama, Brian Auyeung, Jose Guerrero, Ethan Lau

Mechanical Engineering

Statement of Confidentiality: The complete senior project report was submitted to the project advisor and sponsor. The results of this project are of a confidential nature and will not be published at this time.


Manufacture Of Complex Geometry Component For Advanced Material Stiffness, David Russell Bydalek Mar 2018

Manufacture Of Complex Geometry Component For Advanced Material Stiffness, David Russell Bydalek

Master's Theses

The manufacture, laminate design, and modeling of a part with complex geometry are explored. The ultimate goal of the research is to produce a model that accurately predicts part stiffness. This is validated with experimental results of composite parts, which refine material properties for use in a final prototype part model. The secondary goal of this project is to explore manufacturing methods for improved manufacturability of the complex part. The manufacturing portion of the thesis and feedback into material model has incorporated a senior project team to perform research on manufacturing and create composite part to be used for experimental …


Repurposing Carbon Fiber Composite Through Mechanical Means, Jason Morrow Jan 2018

Repurposing Carbon Fiber Composite Through Mechanical Means, Jason Morrow

All Undergraduate Projects

Composite waste from the 777 aircraft is a growing concern for Boeing and amounts to an excess of 600,000 pounds of highly valuable carbon fiber being thrown away. Reclaiming this material has been a long sought-after goal of Boeings as the current solution is ever expanding landfills. The two current methods of recycling composite waste are chemically and mechanically processing. The focus of this paper will be demonstrating the feasibility of mechanically processing composite waste to increase storage efficiency before chemically treating to reclaim the actual carbon fibers. This paper provides a two-stage solution for the recycling question. The first …