Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Composite

Discipline
Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 67

Full-Text Articles in Mechanical Engineering

Design Of Natural Composite I-Beam For Sampe 2019, Brian Harkness Jun 2019

Design Of Natural Composite I-Beam For Sampe 2019, Brian Harkness

Honors Theses

In recent years, the demand for high performance, lightweight, fiber-reinforced composites have grown substantially. Fiberglass and carbon fiber have exemplary material properties that meet the demand and have set the industry standard for performance materials. Although these materials meet their design function, they suffer from high environmental impacts throughout their life cycle and are not cost effective to produce. Flax fiber composites have comparable properties to fiberglass but can be produced more efficiently and production requires much less energy consumption. Flax is a readily available, renewable material that will easily biodegrade once it is the end of its useful life ...


Effects Of Bio-Composites In Corrugated Sandwich Panels Under Edgewise Compression Loading, Jalen Christopher Mano May 2019

Effects Of Bio-Composites In Corrugated Sandwich Panels Under Edgewise Compression Loading, Jalen Christopher Mano

Master's Theses and Project Reports

Present day composite sandwich panels provide incredible strength. Their largest problem, however, is early bonding failure between the core and the skin. This is due to the low bonding surface area of present cores like honeycomb. Corrugated structures could provide a remedy for this with their much larger bonding surface area. Corrugated structures have extreme mechanical properties deeming them particularly useful in aerospace and automotive applications. However, previous research has shown that the stiffness of carbon fiber causes debonding and drastic failure when used as both a core and a skin. Bio-composites have properties that could strengthen the corrugated sandwich ...


Resistance To Helium Bubble Formation In Amorphous Sioc/Crystalline Fe Nanocomposite, Qing Su, Tianyao Wang, Jonathan Gigax, Lin Shao, Michael Nastasi Jan 2019

Resistance To Helium Bubble Formation In Amorphous Sioc/Crystalline Fe Nanocomposite, Qing Su, Tianyao Wang, Jonathan Gigax, Lin Shao, Michael Nastasi

Mechanical & Materials Engineering Faculty Publications

The management of radiation defects and insoluble He atoms represent key challenges for structural materials in existing fission reactors and advanced reactor systems. To examine how crystalline/amorphous interface, together with the amorphous constituents affects radiation tolerance and He management, we studied helium bubble formation in helium ion implanted amorphous silicon oxycarbide (SiOC) and crystalline Fe composites by transmission electron microscopy (TEM). The SiOC/Fe composites were grown via magnetron sputtering with controlled length scale on a surface oxidized Si (100) substrate. These composites were subjected to 50 keV He+ implantation with ion doses chosen to produce a 5 at ...


Examination Of Ice Impactor And Mold, Matt Wilson Jan 2019

Examination Of Ice Impactor And Mold, Matt Wilson

Williams Honors College, Honors Research Projects

This research project investigates impact and damage response of composite sandwich structures impacted with solid ice at extreme low-temperature. Composite sandwich structures of carbon fiber reinforced polymer sheets lining a polyvinyl chloride foam core are subjected to low-velocity impact at arctic temperatures. This impact will be delivered by a solid ice tool-tip via a drop impact testing machine. Data and test results acquired will be composed into a research report that will be submitted to The University of Akron and published in a scientific journal. This project builds upon the earlier study by Elamin, Li, & Tan (2018).


Modeling And Simulation Of The Thermoforming Process In Thermoplastic-Matrix Composite Materials, Philip M. Bean Dec 2018

Modeling And Simulation Of The Thermoforming Process In Thermoplastic-Matrix Composite Materials, Philip M. Bean

Electronic Theses and Dissertations

Thermoplastic-matrix composite materials have unique advantages over traditional thermosets including faster processing, improved fracture toughness, and recyclability. These and other benefits have caused increasing interest in the use of these materials in both aerospace and automotive industries. Due to the differences in behavior, these materials require a different type of manufacturing process to thermoset matrix composites. This manufacturing process generally involves using pre manufactured tape-layers. These layers, containing both thermoplastic-matrix and fiber-reinforcement, are aligned to the desired orientation, and stacked up into a “tailored blank” using an automated tape layup machine. They are then heated to the thermoplastic melting temperature ...


Reinventing The Wheel, Esther K. Unti, Ahmed Z. Shorab, Patrick B. Kragen, Adam M. Menashe Dec 2018

Reinventing The Wheel, Esther K. Unti, Ahmed Z. Shorab, Patrick B. Kragen, Adam M. Menashe

Mechanical Engineering

Reinventing the Wheel selected tires and designed wheels for the 2018 Cal Poly, San Luis Obispo Formula SAE combustion vehicle. Available tire options were evaluated for steady-state and transient performance as well as vehicle integration. A single-piece composite wheel with hollow spokes was designed to meet stiffness, strength, and tolerance requirements. A detailed study of wheel loading and geometric structural efficiency was performed. Finite element analysis was used to iterate the geometry and laminate. A two-piece male mold was designed and machined to manufacture the wheel. Removable silicone inserts were used to create the hollow spokes.


Engineering Viscoelastic Behavior Of Carbon Fiber Reinforced Polymer Composites With Nanoparticles For Controlling Deployment Of Aerospace Structures, Mark Scherbarth Nov 2018

Engineering Viscoelastic Behavior Of Carbon Fiber Reinforced Polymer Composites With Nanoparticles For Controlling Deployment Of Aerospace Structures, Mark Scherbarth

Mechanical Engineering ETDs

The United States Air Force is focused on reducing mass and power consumption of spacecraft to increase their capabilities for space missions. Low mass and power consumption can be achieved by using composites with low density and high stiffness and utilizing few satellite components. One way to achieve reduced mass is by eliminating attendant deployment mechanisms consuming valuable power and mass allocations on spacecraft with deployable structures. Secondary systems are typically used to assist deployable space structures to ensure 100% success. A passively deployed space structure would be of great value to the Department of Defense and the commercial marketplace ...


Design Survey Of Laminated Composite I-Beam, Mrinmoy Saha Aug 2018

Design Survey Of Laminated Composite I-Beam, Mrinmoy Saha

All Graduate Plan B and other Reports

Composite I-beams are popular for high-strength low-weight applications. Learning the macro-mechanics and designing the composite I-beam properly are necessary. In this report, a design overview of the composite I-beam is discussed which is based on classical lamination theory where it includes the homogenization approach, the plane stress assumption and the Kirchhoff hypothesis. Using these assumptions, a method was developed to come up with the effective material properties of a beam. Formulas to calculate maximum deflection and maximum bending stress and shear stress and the stress concentration at the connection of web-flange are discussed which describe ways for designing and manufacturing ...


Novel Structural Health Monitoring And Damage Detection Approaches For Composite And Metallic Structures, Shervin Tashakori Jun 2018

Novel Structural Health Monitoring And Damage Detection Approaches For Composite And Metallic Structures, Shervin Tashakori

FIU Electronic Theses and Dissertations

Mechanical durability of the structures should be continuously monitored during their operation. Structural health monitoring (SHM) techniques are typically used for gathering the information which can be used for evaluating the current condition of a structure regarding the existence, location, and severity of the damage. Damage can occur in a structure after long-term operating under service loads or due to incidents. By detection of these defects at the early stages of their growth and nucleation, it would be possible to not only improve the safety of the structure but also reduce the operating costs. The main goal of this dissertation ...


Composite Suspension For A Mass Market Vehicle, Sarah M. Chapiama, Brian Auyeung, Jose Guerrero, Ethan Lau Jun 2018

Composite Suspension For A Mass Market Vehicle, Sarah M. Chapiama, Brian Auyeung, Jose Guerrero, Ethan Lau

Mechanical Engineering

No abstract provided.


Open Source Multi-Head 3d Printer For Polymer-Metal Composite Component Manufacturing, J. Laureto, Joshua M. Pearce Mar 2018

Open Source Multi-Head 3d Printer For Polymer-Metal Composite Component Manufacturing, J. Laureto, Joshua M. Pearce

Joshua M. Pearce

As low-cost desktop 3D printing is now dominated by free and open source self-replicating rapid prototype (RepRap) derivatives, there is an intense interest in extending the scope of potential applications to manufacturing. This study describes a manufacturing technology that enables a constrained set of polymer-metal composite components. This paper provides (1) free and open source hardware and (2) software for printing systems that achieves metal wire embedment into a polymer matrix 3D-printed part via a novel weaving and wrapping method using (3) OpenSCAD and parametric coding for customized g-code commands. Composite parts are evaluated from the technical viability of manufacturing ...


Fabrication And Characterizations Of Lagp/Peo Composite Electrolytes For All Solid-State Lithium-Ion Batteries, Jeremy J. Lee Jan 2018

Fabrication And Characterizations Of Lagp/Peo Composite Electrolytes For All Solid-State Lithium-Ion Batteries, Jeremy J. Lee

Browse all Theses and Dissertations

With the rise of electric vehicles and increasing dependence on mobile electronics, the demands for lithium-ion batteries have followed in tandem for their high energy and power densities. However, traditional lithium-ion batteries consisting of liquid electrolytes have limited operating temperatures and are susceptible to ignition and subsequent fires. Recently, battery research has diverged into solid state chemistry to address the aforementioned issues. In this research, we systematically investigate a series of ceramic/polymer lithium-ion conducting composite electrolytes, i.e. Li1.4Al0.4Ge1.6(PO4)3 /lithiated polyethylene oxide (LAGP/PEO). Lithiated PEO was prepared with two different lithium salts, LiBF4 ...


Composite Cutting Device, Mikhail Minasyan Jan 2018

Composite Cutting Device, Mikhail Minasyan

All Undergraduate Projects

Title and Author: Composite Cutting Device by Misha Minasyan (Mechanical Engineering Technology)

As the aerospace industry innovates, so does the material that is being used. No longer are airplane manufacturers like Boeing depending on only various metals for making their wings. A transition over the past few years has been made to using composite materials because of there light weight and strength. The issue that composite material brings is that it cannot be recycled without processing. The current 777X made by Boeing has transitioned to used composite to manufacture their airplane wings.

A two student team developed two separate processes ...


Repurposing Carbon Fiber Composite Through Mechanical Means, Jason Morrow Jan 2018

Repurposing Carbon Fiber Composite Through Mechanical Means, Jason Morrow

All Undergraduate Projects

Composite waste from the 777 aircraft is a growing concern for Boeing and amounts to an excess of 600,000 pounds of highly valuable carbon fiber being thrown away. Reclaiming this material has been a long sought-after goal of Boeings as the current solution is ever expanding landfills. The two current methods of recycling composite waste are chemically and mechanically processing. The focus of this paper will be demonstrating the feasibility of mechanically processing composite waste to increase storage efficiency before chemically treating to reclaim the actual carbon fibers. This paper provides a two-stage solution for the recycling question. The ...


Optimization Of Tow-Steered Composite Wind Turbine Blades For Static Aeroelastic Performance, Stephen Michael Barr Jan 2018

Optimization Of Tow-Steered Composite Wind Turbine Blades For Static Aeroelastic Performance, Stephen Michael Barr

Theses and Dissertations

The concept of passive aeroelastic tailoring is explored to maximize the performance of the NREL 5-MW wind turbine blade in a uniform flow. Variable-angle tow composite materials model the spanwise-variable wind turbine blade design to allow material-adaptive bend-twist coupling under static aerodynamic loading. A constrained optimization algorithm determines the composite fiber angles along the blade span for four inflow conditions ranging from cut-in to rated wind speeds. The computational fluid dynamics solver CRUNCH CFD and commercial finite element analysis solver Abaqus compute the static aerodynamic loads and structural deformations of the blades, respectively, which are passed iteratively between the solvers ...


Effect Of Ultrasonic Treatment On The Microstructure And Mechanical Properties Of Al6061 And Composite, Ana S. Exime Nov 2017

Effect Of Ultrasonic Treatment On The Microstructure And Mechanical Properties Of Al6061 And Composite, Ana S. Exime

FIU Electronic Theses and Dissertations

In this study, the effect of ultrasonic treatment (UST) parameters such as amplitude, sonication time, and melt temperature on microstructure and microhardness of Al 6061 alloy is evaluated. The effect of UST on the dispersion of tungsten disulfide (WS2) and carbon nanotubes (CNT) as reinforcement particles in Al 6061 during casting is also studied. The cast Al 6061 with UST demonstrated 32% grain size reduction and 8% increase in the microhardness for optimum processing conditions. The cavitation process induced by UST is responsible for the refinement in microstructure and increase of hardness by enhancing the degassing and nucleation process ...


Open Source Multi-Head 3d Printer For Polymer-Metal Composite Component Manufacturing, J. Laureto, Joshua M. Pearce Jun 2017

Open Source Multi-Head 3d Printer For Polymer-Metal Composite Component Manufacturing, J. Laureto, Joshua M. Pearce

Department of Materials Science and Engineering Publications

As low-cost desktop 3D printing is now dominated by free and open source self-replicating rapid prototype (RepRap) derivatives, there is an intense interest in extending the scope of potential applications to manufacturing. This study describes a manufacturing technology that enables a constrained set of polymer-metal composite components. This paper provides (1) free and open source hardware and (2) software for printing systems that achieves metal wire embedment into a polymer matrix 3D-printed part via a novel weaving and wrapping method using (3) OpenSCAD and parametric coding for customized g-code commands. Composite parts are evaluated from the technical viability of manufacturing ...


Development Of 3d Compression Molded Composite Primary Structure, Sean D. Tischler, Jacob H. Goldstein, Alea A. Perez Jun 2017

Development Of 3d Compression Molded Composite Primary Structure, Sean D. Tischler, Jacob H. Goldstein, Alea A. Perez

Mechanical Engineering

The work accomplished by the Black Gold team improved upon the carbon fiber compression molding research and information available on the Cal Poly San Luis Obispo campus. The team used the rear suspension rocker arm off a Ventana Alpino mountain bike as a design goal for this project. This research and body of work includes the methods used to design a compression molded part for complex part loading and shape. This extends to the process of choosing an appropriate layup process, in addition to benefits and drawbacks of the use of chopped fibers in compression molding. The research includes the ...


Bear Minimum: Ultralight Composite Bear Canister, Rama B. Adajian, Adam C. Eisenbarth Jun 2017

Bear Minimum: Ultralight Composite Bear Canister, Rama B. Adajian, Adam C. Eisenbarth

Mechanical Engineering

The ultralight backpacking community needs a strong, easy to use, safe bear canister that is lighter than current market products for trekking in the backcountry. A full design of the lid for the bear canister is to be completed. This includes the locking mechanism to ensure it is bear proof, the interface between the lid and the canister, and the structure of the lid so it passes the strength and weight specifications. The lid, along with the already designed canister body, is to be manufactured with formal documentation. The lid will initially be tested separately and then with the canister ...


Utilizing Reprap Style 3d Printers For The Manufacturing Of Composite Heat Exchangers, John Laureto Jan 2017

Utilizing Reprap Style 3d Printers For The Manufacturing Of Composite Heat Exchangers, John Laureto

Dissertations, Master's Theses and Master's Reports

The low cost 3D printing market is currently dominated by the application of RepRap (self-replicating rapid-prototyper) variants. Presented in this document are practical utilizations of RepRap technology. Developed are innovative processes to manufacture composite materials systems for thermal management solutions.

First, a laser polymer welder system is validated by quantifying maximum peak load and weld width of linear low density polyethylene (LLDPE) lap welds as a function of linear energy density. The development of practical engineering data, in this application, is critical to producing mechanically durable welds. Developed laser and printer parameter sets allow for manufacturing of LLDPE multi-layered heat ...


Shear Induced Fiber Alignment And Acoustic Nanoparticle Micropatterning During Stereolithography, Doruk Erdem Yunus Jan 2017

Shear Induced Fiber Alignment And Acoustic Nanoparticle Micropatterning During Stereolithography, Doruk Erdem Yunus

Theses and Dissertations

The stereolithograpy method, which consists of a light source to polymerize the liquid photocurable resin, can produce structures with complex shapes. Most of the produced structures are unreinforced neat pieces. The addition of reinforcement, such as fibers and particles are regularly utilized to improve mechanical properties and electrical conductivity of the printed parts. Added fibers might be chosen as short or continuous fibers and the properties of the reinforced composite materials can be significantly improved by aligning the fibers in preferred directions. The first aim of this dissertation is to enhance the tensile and flexural strengths of the 3d printed ...


Quantitative Ultrasonic Coda Wave (Diffuse Field) Nde Of Carbon-Fiber Reinforced Polymer Plates, Richard Livings Jan 2017

Quantitative Ultrasonic Coda Wave (Diffuse Field) Nde Of Carbon-Fiber Reinforced Polymer Plates, Richard Livings

Graduate Theses and Dissertations

The increasing presence and applications of composite materials in aerospace structures precipitates the need for improved Nondestructive Evaluation (NDE) techniques to move from simple damage detection to damage diagnosis and structural prognosis. Structural Health Monitoring (SHM) with advanced ultrasonic (UT) inspection methods can potentially address these issues. Ultrasonic coda wave NDE is one of the advanced methods currently under investigation. Coda wave NDE has been applied to concrete and metallic specimens to assess damage with some success, but currently the method is not fully mature or ready to be applied for SHM. Additionally, the damage diagnosis capabilities and limitations of ...


Fabrication And Thermoelectric Characterization Of Stretchable Conductive Latex-Based Composites, Cory Michael Arcovitch Jan 2017

Fabrication And Thermoelectric Characterization Of Stretchable Conductive Latex-Based Composites, Cory Michael Arcovitch

Graduate College Dissertations and Theses

Miniaturized stretchable electronic devices that can be bent and strained elastically without breaking, have drawn considerable research interest in recent years for wearable computers and integrated bio-sensor applications. Portable electrical power harvesting remains a critical challenge in flexible electronics materials. One proposed solution has been to convert waste heat from the human body into electricity using thermoelectric materials. Traditionally, however, these materials are brittle ceramic semiconductors with limited fracture resistance under deformation. The primary objective of this thesis is to address this challenge by fabricating and studying the mechanical, thermal and electrical performance of stretchable composites combining natural latex polymer ...


Progressive Failure Analysis Of Composite Materials Using The Puck Failure Criteria, Karan Kodagali Jan 2017

Progressive Failure Analysis Of Composite Materials Using The Puck Failure Criteria, Karan Kodagali

Theses and Dissertations

Fiber reinforced composites have been used in various engineering structures and applications especially in naval, automotive, aeronautical and sports industries. These composite materials generally exhibit brittle damage behavior. The anisotropy in the material and different kinds of failure mechanisms make it difficult to accurately characterize the behavior of composite materials. The present work aims to verify and apply the Puck Failure Criteria using the commercially available finite element package ABAQUS by writing a user-material subroutine in FORTRAN. The model is implemented with different post failure degradation schemes.

In the present work, the progressive failure on composite materials in analyzed using ...


An Investigation Of Composite Failure Analyses And Damage Evolution In Finite Element Models, Ann M. Frappier Dec 2016

An Investigation Of Composite Failure Analyses And Damage Evolution In Finite Element Models, Ann M. Frappier

Open Access Theses

This paper presents a composite conical structure used commonly in flight-qualification testing. This structure’s overall load-displacement behavioral response is characterized. Mixed-mode multidelamination in a layered composite specimen is considered in Abaqus/Explicit through both the Virtual Crack Closure Technique and Cohesive Elements. The Virtual Crack Closure Technique and Cohesive Elements are compared against experimental test results presented in literature. Further, a thorough comparison in which the effects of failure criteria type, through-thickness mesh density, and finite element type on the progressive failure response of this composite assembly is discussed. Lastly, Abaqus/Standard and Helius PFA are compared in order ...


Compression Molded Composite Component, Greg Hermansen, Larsson Johnson, Joanne Medrano, Kyle Hammell Dec 2016

Compression Molded Composite Component, Greg Hermansen, Larsson Johnson, Joanne Medrano, Kyle Hammell

Mechanical Engineering

The following final design report outlines the design and fabrication of a carbon fiber compression molded sunglasses case. It intends to guide the development of a future lab activity for a composites undergraduate course at Cal Poly – San Luis Obispo. The activity aims to support an educational investigation in "out-of-autoclave" composites manufacturing methods, such as compression molding, which offer some key benefits over autoclave molding. The methodology behind the creation of a conceptual design, an initial prototype, and a final product is laid out in detail below.


Ultra-Light Bear Canister, Naveen Beasley, Eli Rogers, Cory Wilson, Donald Wood Jun 2016

Ultra-Light Bear Canister, Naveen Beasley, Eli Rogers, Cory Wilson, Donald Wood

Mechanical Engineering

A bear canister is the primary tool used by outdoor enthusiasts to protect their food from bears while camping or backpacking. There are many effective products currently on the market, however many are not designed with reduced weight in mind. Hardcore backpackers want to have the lightest gear possible to ease the strain of carrying a large pack for sometimes weeks at a time.

Current bear canisters exist that utilize carbon fiber for weight reduction, however they rely on stock carbon tubes and lack engineering analysis, and no competitor has a fully composite bear canister available. Our sponsor, Nick Hellewell ...


Investigating The Effect Of Carbon Nanotube Functionalization In A Polydimethylsiloxane Composite Through Use Of A Stepped Bar Apparatus, Matthew I. Ralphs May 2016

Investigating The Effect Of Carbon Nanotube Functionalization In A Polydimethylsiloxane Composite Through Use Of A Stepped Bar Apparatus, Matthew I. Ralphs

All Graduate Theses and Dissertations

Thermal interface materials (TIMs) are used as an aid in transporting heat away from a circuit or electronic module. Composite materials are a popular research area for TIMs because they allow the desired properties from the individual constituents to be combined. The composite selected for this study uses carbon nanotubes (CNT) as the filler and an elastomeric polymer for the matrix, specifically a multiwalled carbon nanotube (MWCNT) / polydimethylsiloxane (PDMS) composite. Additionally, functionalization of the CNT may affect the composites’ thermal conductivity because of its effect on the CNT dispersion in the polymer matrix and its effect on the CNT-polymer interface ...


Mechanical Behavior Of Layered Foam Composite Panels Subjected To Low Velocity Impact Events, Tianyi Luo Jan 2016

Mechanical Behavior Of Layered Foam Composite Panels Subjected To Low Velocity Impact Events, Tianyi Luo

Theses and Dissertations

A layered foam composite panel system has higher moment of inertia, therefore increasing its bending stiffness. A low modulus backing material in the layered composite panel could provide energy absorption capability when a impact event occurs. These feature make the structure system very promising in many engineering field such as energy absorption, aerospace and automotive. Polymeric and textile reinforcements can be used to form a large deformable structure with closed-cell foam substrate together. The mechanical behaviors of such materials, including the thermoplastic polyolefin membrane, reinforcement scrim, low modulus closed-cell foam and fiber-glass stiffened facer sheets, were characterized and exanimated at ...


Anisotropic Electrical Response Of Carbon Fiber Reinforced Composite Materials, Mohammad Faisal Haider Jan 2016

Anisotropic Electrical Response Of Carbon Fiber Reinforced Composite Materials, Mohammad Faisal Haider

Theses and Dissertations

Composites materials are often subjected to multi-physical conditions in different applications where, in addition to mechanical loads, they also need to sustain other types of loads such as electrical currents. The multi-physical behavior of composites needs to be understood and analyzed to facilitate new multi-functional material design. An essential first step towards this goal is to understand how multi-physics properties depend on local details (e.g. micro-structure). Composite materials have heterogeneous electrical properties (carbon/epoxy) at the local level that can be different at the global level. To conduct the multi-physics study, the electrical signal is employed to the composite ...