Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Mechanical Engineering

Numerical Modeling Of Advanced Propulsion Systems, Peetak P. Mitra Oct 2021

Numerical Modeling Of Advanced Propulsion Systems, Peetak P. Mitra

Doctoral Dissertations

Numerical modeling of advanced propulsion systems such as the Internal Combustion Engine (ICE) is of great interest to the community due to the magnitude of compute/algorithmic challenges. Fuel spray atomization, which determines the rate of fuel-air mixing, is a critical limiting process for the phenomena of combustion within ICEs. Fuel spray atomization has proven to be a formidable challenge for the state-of-the-art numerical models due to its highly transient, multi-scale, and multi-phase nature. Current models for primary atomization employ a high degree of empiricism in the form of model constants. This level of empiricism often reduces the art of predictive …


Fundamental Studies Of Electrochemical Reactions And Microfluidics In Proton Exchange Membrane Electrolyzer Cells, Jingke Mo Dec 2016

Fundamental Studies Of Electrochemical Reactions And Microfluidics In Proton Exchange Membrane Electrolyzer Cells, Jingke Mo

Doctoral Dissertations

In electrochemical energy devices, including fuel cells, electrolyzers and batteries, the electrochemical reactions occur only on triple phase boundaries (TPBs). The boundaries provide the conductors for electros and protons, the catalysts for electrochemical reactions and the effective pathways for transport of reactants and products. The interfaces have a critical impact on the overall performance and cost of the devices in which they are incorporated, and therefore could be a key feature to optimize in order to turn a prototype into a commercially viable product. For electrolysis of water, proton exchange membrane electrolyzer cells (PEMECs) have several advantages compared to other …


Turbine Engine Rotor Blade Damage Detection Through The Analysis Of Vibration Of Stationary Components, Jon Rylan Cox Dec 2016

Turbine Engine Rotor Blade Damage Detection Through The Analysis Of Vibration Of Stationary Components, Jon Rylan Cox

Doctoral Dissertations

Rotor blade fault detection and health monitoring systems are crucial for gas turbine engine testing and evaluation. The most commonly used techniques involve monitoring blades directly using strain gages, or drilling optical access holes in the engine casing for non-contact probes to monitor blade deflection and vibration. In this work, less intrusive, indirect techniques for rotor blade fault detection are developed, based on the hypotheses that the vibratory response of stationary components excited by the rotor blade dynamic pressure pulse can be used to detect the presence, location, and severity of rotor blade damage and changes in rotor blade natural …


Lightweight, High-Temperature Radiator For In-Space Nuclear-Electric Power And Propulsion, Briana N. Tomboulian Nov 2014

Lightweight, High-Temperature Radiator For In-Space Nuclear-Electric Power And Propulsion, Briana N. Tomboulian

Doctoral Dissertations

The desire to explore deep space destinations with high-power and high-speed spacecraft inspired this work. Nuclear Electric Propulsion (NEP), shown to provide orders of magnitude higher specific impulse and propulsion efficiency over traditional chemical rockets, has been identified as an enabling technology for this goal. One of large obstacle to launching an NEP vehicle is total mass. Increasing the specific power (kW/kg) of the heat radiator component is necessary to meet NASA’s mass targets. This work evaluated a novel lightweight, high-temperature carbon fiber radiator designed to meet the mass requirements of future NEP missions. The research is grouped into three …


Fully Coupled Fluid And Electrodynamic Modeling Of Plasmas: A Two-Fluid Isomorphism And A Strong Conservative Flux-Coupled Finite Volume Framework, Richard Joel Thompson Aug 2013

Fully Coupled Fluid And Electrodynamic Modeling Of Plasmas: A Two-Fluid Isomorphism And A Strong Conservative Flux-Coupled Finite Volume Framework, Richard Joel Thompson

Doctoral Dissertations

Ideal and resistive magnetohydrodynamics (MHD) have long served as the incumbent framework for modeling plasmas of engineering interest. However, new applications, such as hypersonic flight and propulsion, plasma propulsion, plasma instability in engineering devices, charge separation effects and electromagnetic wave interaction effects may demand a higher-fidelity physical model. For these cases, the two-fluid plasma model or its limiting case of a single bulk fluid, which results in a single-fluid coupled system of the Navier-Stokes and Maxwell equations, is necessary and permits a deeper physical study than the MHD framework. At present, major challenges are imposed on solving these physical models …


Plasmonics Resonance Enhanced Active Photothermal Effects In Aluminum Nanoenergetics For Propulsion Applications, Jacques Abboud Aug 2013

Plasmonics Resonance Enhanced Active Photothermal Effects In Aluminum Nanoenergetics For Propulsion Applications, Jacques Abboud

Doctoral Dissertations

In this dissertation, aluminum nanoparticles (Al NPs) are shown capable to on-demand enhance and control the local photothermal energy deposition, both spatially and temporally, via active photothermal effects initiated by the localized surface plasmon resonance (LSPR) phenomenon, and amplified by the Al exothermal oxidation reactions. Experiments in dry and wet environments along with computational modeling of the photothermal process are very desirable for gaining fundamental understanding, ignition optimization and parameter exploration.

Combined phenomena of motion and ignition of Al NPs are explored first in this study. Both resulting from exposing a pile of the nanoenergetics in hand to a single …


Multidimensional Compressible Framework For Modeling Biglobal Stability In Rocket Motors, Michel Henry Akiki Aug 2013

Multidimensional Compressible Framework For Modeling Biglobal Stability In Rocket Motors, Michel Henry Akiki

Doctoral Dissertations

Rocket motor stability analysis has historically been focused on two fundamental theories: the acoustic and the hydrodynamic. While the acoustic part examines the system at resonant states, the hydrodynamic component focuses on the fluid-wall interactions and the vortex shedding mechanisms which are responsible for exciting the system. Traditionally, the two concepts are studied independently and their results are then superposed for a more complete solution. In this study, we analyze the problem from a hydrodynamic standpoint and extend it to include compressibility. This is realized by reducing the linearized Navier-Stokes and energy equations to their biglobal form assuming a two-dimensional …


Parametric Instability Investigation And Stability Based Design For Transmission Systems Containing Face-Gear Drives, Meng Peng Aug 2012

Parametric Instability Investigation And Stability Based Design For Transmission Systems Containing Face-Gear Drives, Meng Peng

Doctoral Dissertations

The objective of this dissertation is to provide a novel design methodology for face-gear transmissions based on system stability - a dynamics viewpoint. The structural dynamics models of transverse and torsional vibrations are developed for face-gear drives with spur pinions to investigate the parametric instability behavior in great depth. The unique face-gear meshing kinematics and the fluctuation of mesh stiffness due to a nonunity contact-ratio are considered in these models. Since the system is periodically timevarying, Floquet theory is utilized to solve the Mathieu-Hill system equations and determine the system stability numerically. To avoid complex numerical computations, Treglod’s approximation is …


The Biglobal Instability Of The Bidirectional Vortex, Joshua Will Batterson Aug 2011

The Biglobal Instability Of The Bidirectional Vortex, Joshua Will Batterson

Doctoral Dissertations

State of the art research in hydrodynamic stability analysis has moved from classic one-dimensional methods such as the local nonparallel approach and the parabolized stability equations to two-dimensional, biglobal, methods. The paradigm shift toward two dimensional techniques with the ability to accommodate fully three-dimensional base flows is a necessary step toward modeling complex, multidimensional flowfields in modern propulsive applications. Here, we employ a two-dimensional spatial waveform with sinusoidal temporal dependence to reduce the three-dimensional linearized Navier-Stokes equations to their biglobal form. Addressing hydrodynamic stability in this way circumvents the restrictive parallel-flow assumption and admits boundary conditions in the streamwise direction. …


Effect Of Unsteady Combustion On The Stability Of Rocket Engines, Tina Morina Rice May 2011

Effect Of Unsteady Combustion On The Stability Of Rocket Engines, Tina Morina Rice

Doctoral Dissertations

Combustion instability is a problem that has plagued the development of rocket-propelled devices since their conception. It is characterized by the occurrence of high-frequency nonlinear gas oscillations inside the combustion chamber. This phenomenon degrades system performance and can result in damage to both structure and instrumentation.

The goal of this dissertation is to clarify the role of unsteady combustion in the combustor instability problem by providing the first quantified estimates of its effect upon the stability of liquid rocket engines. The combination of this research with a new system energy balance method, accounting for all dynamic interactions within a system, …