Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Propulsion and Power

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 106

Full-Text Articles in Mechanical Engineering

Kwad - Ksu All Weather Autonomous Drone, Nick Farinacci, Sebastian Gomez, Stewart Baker, Ed Sheridan Nov 2023

Kwad - Ksu All Weather Autonomous Drone, Nick Farinacci, Sebastian Gomez, Stewart Baker, Ed Sheridan

Symposium of Student Scholars

"KWAD" or "KSU all-Weather Autonomous Drone" project was sponsored by Ultool, LLC to the KSU Research and Service Foundation to create a lightweight drone capable of capturing HD video during all-weather operations. The conditions of all-weather operation include rainfall of one inch per hour and wind speeds of up to twenty miles per hour. In addition, a global minimum structural safety factor of two is required to ensure the system's integrity in extreme weather conditions. Potential mission profiles include autonomous aerial delivery, topological mapping in high moisture areas, security surveillance, search and rescue operations, emergency transportation of medical supplies, and …


Performance And Emissions Study Of N+3 And N+4 Engine Models With Several Fuel Types Using Npss, Abel Solomon Aug 2023

Performance And Emissions Study Of N+3 And N+4 Engine Models With Several Fuel Types Using Npss, Abel Solomon

McKelvey School of Engineering Theses & Dissertations

The aviation industry is known to be one of the major contributors to greenhouse gases accounting for 4.9% of the global greenhouse emissions. With the ever-increasing threat of climate change to the overall survival of the planet, the exploration of new technologies and alternative energy sources that minimize greenhouse gas emissions are of paramount importance. In this regard, the development of propulsion systems well suited for the performance and emissions requirements of future commercial aircraft plays a crucial role. This thesis investigates N+3 and N+4 technology-level propulsion systems that are proposed by NASA as possible propulsion systems for advanced single-aisle …


The Influence Of Mixing Duct Length And Phase Of Flight On Wall Temperatures Of A Rocket Based Combined Cycle Engine In Ejector And Air-Augmented Modes, Jonathan Grow Jul 2023

The Influence Of Mixing Duct Length And Phase Of Flight On Wall Temperatures Of A Rocket Based Combined Cycle Engine In Ejector And Air-Augmented Modes, Jonathan Grow

Doctoral Dissertations and Master's Theses

Rocket Based Combined Cycle (RBCC) engines have been theorized as a possible means of powering launch vehicles and high-speed atmospheric vehicles. By incorporating aspects of both air-breathing and rocket propulsion, RBCC engines promise up to a 230 % increase in specific impulse over traditional chemical rocket propulsion by entraining a secondary flow of atmospheric air and mixing it with the exhaust of a rocket motor. Students within the Embry-Riddle Future Space Explorers and Developers Society (ERFSEDS) identified a
problem of excessive heating and structural failure of the mixing duct during launch and transonic flight of a student-built flight test vehicle. …


Cooled Liquid Rocket Thrust Chamber, Benjamin Gibson, Kealan Frederick Harris, Ryan Frank Schackel, Bjorn Thorsen Jun 2023

Cooled Liquid Rocket Thrust Chamber, Benjamin Gibson, Kealan Frederick Harris, Ryan Frank Schackel, Bjorn Thorsen

Mechanical Engineering

Cooling may affect the thrust output of a small-scale rocket. Little research is published about small-scale rocket performance. We hypothesize the thrust produced varies as the amount of cooling varies. To facilitate assessing this hypothesis, we have designed and built a liquid rocket engine rated for at approximately 25 lbf of thrust. Our objective was to build in parallel with Cal Poly Space Systems, who built a rocket engine with similar specifications except without cooling. Our challenge is to integrate film cooling, so that the effects of cooling may be compared to Cal Poly Space System’s engine which has …


Enabling Premixed Hydrogen-Air Combustion For Aeroengines Via Laboratory Experiment Modeling, Christopher James Caulfield May 2023

Enabling Premixed Hydrogen-Air Combustion For Aeroengines Via Laboratory Experiment Modeling, Christopher James Caulfield

Masters Theses

All combustion systems from large scale power plants to the engines of cars to gas turbines in aircraft are looking for new fuel sources. Recently, clean energy for aviation has come into the foreground as an important issue due to the environment impacts of current combustion methods and fuels used. The aircraft industry is looking towards hydrogen as a new, powerful, and clean fuel of the future. However there are several engineering and scientific challenges to overcome before hydrogen can be deployed into the industry. These issues
range from storing the hydrogen in a viable cryogenic form for an aircraft …


On The Simulation Of Supersonic Flame Holder Cavities With Openfoam, Zachary Chapman Jan 2023

On The Simulation Of Supersonic Flame Holder Cavities With Openfoam, Zachary Chapman

Electronic Theses and Dissertations

One of the next major advancements in the aerospace industry will be hypersonic flight. However, to achieve hypersonic flight, propulsion systems capable of reaching hypersonic speeds need to be developed. One of the more promising hypersonic propulsion systems is the scramjet engine, however, several problems still need to be explored before reliable scramjet engines can be produced, the biggest being keeping the engine ignited. This has led to the use of flame holder cavities to create a region of subsonic flow within the engine to allow combustion to occur. High experimental costs make the use of computational fluid dynamic (CFD) …


Investigations Of A Surrogate Fuel Based On Fischer-Tropsch Gtl And Ctl In Cvcc, Idi And Di Compression Ignition Engines, Amanda C. Weaver Jan 2023

Investigations Of A Surrogate Fuel Based On Fischer-Tropsch Gtl And Ctl In Cvcc, Idi And Di Compression Ignition Engines, Amanda C. Weaver

Electronic Theses and Dissertations

With the increase in availability, feedstocks, and properties of alternative fuels, compatibility issues emerge between current engine platforms often requiring a limit on the blend percentage of alternative fuel in conventional fuel or alteration to the engine platform. Two key metrics were identified, autoignition quality and lubrication characteristics, as vital for the proper function of a compression ignition engine, and if the blend of alternative fuels matches these two criteria for the diesel standard, then the resulting blend percentage can be considered as a viable alternative for complete replacement of conventional petroleum ULSD. Autoignition quality was matched using blends S-8, …


Application Of Direct Feedback Tunable Diode Laser Absorption Spectroscopy Within A Hybrid Rocket Combustor, Connor Becnel Oct 2022

Application Of Direct Feedback Tunable Diode Laser Absorption Spectroscopy Within A Hybrid Rocket Combustor, Connor Becnel

LSU Master's Theses

With interest in space travel and space-related science increasing in recent years, significant efforts to reduce the cost and increase the safety of rocket motors have become commonplace. Liquid rockets are currently the most commonly used system, but there is interest in the reduced complexity of hybrid rockets. For these hybrid rocket motors to become the norm, extensive research on their complex boundary layer combustion needs to be performed. Modeling these hybrid systems is of much interest to companies developing rocket motors; ultimately, small-scale experiments will help validate their behavior. This paper covers the application of a near-infrared tunable diode …


Turbine Cooling System With Energy Separation, James L. Rutledge, Matthew Fuqua, Carol M. Bryant Sep 2022

Turbine Cooling System With Energy Separation, James L. Rutledge, Matthew Fuqua, Carol M. Bryant

AFIT Patents

A method and system for cooling an engine and/or vehicle using energy separation is disclosed herein. An energy separation device is operable for separating a compressed gaseous coolant stream into a first relatively cooler coolant flow stream and a second relatively hotter coolant flow stream. The relative cooler coolant flow stream is directed to a first region requiring increased cooling and the relative hotter coolant flow stream is directed to a second region requiring lower cooling than the first region in the engine or vehicle.


Disk Engine With Circumferential Swirl Radial Combustor, Brian Bohan, Marc Polanka, Bennett Staton Aug 2022

Disk Engine With Circumferential Swirl Radial Combustor, Brian Bohan, Marc Polanka, Bennett Staton

AFIT Patents

A disk engine and system configured to provide high power at a reduced axial length is disclosed herein. The disk engine includes a radial compressor, a compressor discharge manifold positioned circumferentially about compressor, a combustion chamber positioned within the discharge manifold and a radial turbine positioned radially inward of the combustion chamber.


A Numerical Optimization Study Of A Novel Electrospray Emitter Design, Joshua H. Howell May 2022

A Numerical Optimization Study Of A Novel Electrospray Emitter Design, Joshua H. Howell

Masters Theses

The low thrust and high specific impulse of electric propulsion has been brought to the forefront for CubeSat and small spacecraft applications. Electrospray thrusters, which operate via electrostatic principles, have seen much research, development, and application in recent years. The small sizes of the spacecraft that utilize electrospray thrusters has focused development into the miniaturization of this technology to the micro-scale. Miniaturization introduces design challenges that must be addressed, including power supply mass and footprint requirements. This consequence requires investigation into the effects of design choices on the thruster onset voltage, defined as the voltage at which ion emission begins. …


Cfd Simulation Of Varying Fuel Jet Placement Of Mach 2 Flow (Paper), Sara Broad Apr 2022

Cfd Simulation Of Varying Fuel Jet Placement Of Mach 2 Flow (Paper), Sara Broad

Honors Capstone Projects

Supersonic flow is a concept that has been researched heavily for the past twenty years. It has many applications, with the most notable one being for the defense industry. This project specifically is based off a model that is being currently used for Air Force research. With supersonic flow, where the Mach number is larger than one, there has been continual research specifically on flameholders. Flameholders involve the discussion of the mixing, ignition, and combustion of the fuel that is released into the lower cavity of the scramjet. There is a current standard for the placement of fuel jets, but …


Understanding The Nonlinear Dynamics Governing Vertical-Lift Vehicles With Variable-Speed, Fixed Rotors, Stephanie Vavra, Micah Busboom, Aleea Stanford, Keegan Moore Apr 2022

Understanding The Nonlinear Dynamics Governing Vertical-Lift Vehicles With Variable-Speed, Fixed Rotors, Stephanie Vavra, Micah Busboom, Aleea Stanford, Keegan Moore

UNL Student Research Days Posters, Undergraduate

Problem: Traffic significantly limits travel in urban areas. • The NASA Urban Air Mobility Project is developing an air taxi as an alternative mean of transportation (Fig. 1).

Challenge: Operating rotors at different frequencies may cause the cabin to vibrate at high amplitudes. Such effects are currently unknown.

Objective: Understand the effect of variable speed rotors on passenger comfort.

From the reduced-order modeling simulations, it can be assumed that counteracting the rotor speed in-balances can reduce the displacement and vibrations experienced at the center of the wing. In other words, should a rotor not maintain its optimal operation speed, reducing …


Investigation Of The Low-Temperature Combustion Phenomena Of A Fischer-Tropsch Synthetic Aerospace Fuel In A Constant Volume Combustion Chamber For Greenhouse Gas Reduction, Lily H. Parker Apr 2022

Investigation Of The Low-Temperature Combustion Phenomena Of A Fischer-Tropsch Synthetic Aerospace Fuel In A Constant Volume Combustion Chamber For Greenhouse Gas Reduction, Lily H. Parker

Honors College Theses

Greenhouse gases (GHG) have a harmful effect on our environment as they trap heat in the atmosphere accelerating climate change. As such, the Federal Aviation Administration’s 2025 strategic plan to reduce GHG emissions from air transportation. This call to action for a more environmentally friendly option highlights the importance of synthetic fuels as they are more sustainable compared to traditional fossil fuels. An investigation was conducted into the thermal-physical properties of Synthetic Fischer-Tropsch (F-T) Sustainable Aviation Fuels (SAF) and the Low Temperature Combustion (LTC). LTC is composed of the Low Temperature Heat Release (LTHR) and Negative Temperature Coefficient (NTC) region, …


A Non-Reacting Passive Scalar Comparison Of Starccm And Openfoam In A Supersonic Cavity Flame Holder, Thomas Nuese Jan 2022

A Non-Reacting Passive Scalar Comparison Of Starccm And Openfoam In A Supersonic Cavity Flame Holder, Thomas Nuese

Electronic Theses and Dissertations

The scramjet engine equipped with a modern-day airliner would allow for very quick travel across the United States. The major problem is that designing such an engine and testing it to make sure it is safe would cost millions if not billions of dollars. Computational fluid dynamics allows for complex designs to be tested but can still take many days, weeks, or even months to complete. With the use of computational fluid dynamics (CFD), the scramjet engine can be analyzed to determine a quicker way to test and develop a reliable configuration in addition to analyzing the effects of different …


Concept Evaluation And Development Of A Novel Approach For Integration Of Turbogeneration, Electrification And Supercharging On Heavy Duty Engines, Satyum Joshi Jan 2022

Concept Evaluation And Development Of A Novel Approach For Integration Of Turbogeneration, Electrification And Supercharging On Heavy Duty Engines, Satyum Joshi

Dissertations, Master's Theses and Master's Reports

While many technologies such as electrically assisted turbocharging, exhaust energy recovery and mild hybridization have already proven to significantly increase heavy-duty engine efficiency, the key challenge to their widespread adoption has been their cost effectiveness and packaging. This research specifically addresses these challenges through evaluation and development of a novel technology concept termed as the Integrated Turbogeneration, Electrification and Supercharging (ITES) system. The concept integrates a secondary compressor, a turbocompound/expander turbine and an electric motor through a planetary gearset into the engine cranktrain. The approach enables a reduced system cost and space-claim, while maximizing the efficiency benefits of independent technologies. …


Cfd And Heat Transfer Analysis Of Rocket Cooling Techniques On An Aerospike Nozzle, Geoffrey Sullivan Jan 2022

Cfd And Heat Transfer Analysis Of Rocket Cooling Techniques On An Aerospike Nozzle, Geoffrey Sullivan

Electronic Theses and Dissertations

In recent years the development of rocket engines has been mainly focused on improving the engine cycle and creating new fuels. Rocket nozzle design has not been changed since the late 1960s. Recent needs for reliable and reusable rockets, as well as advancements in additive manufacturing, have brought new interest into the aerospike nozzle concept. This nozzle is a type of altitude adjusting nozzle that is up to 90% more efficient than bell nozzles at low altitudes and spends up to 30% less fuel. Since the nozzle body is submerged in the hot exhaust gasses it is difficult to keep …


Investigations Of The Low Temperature Combustion Regions And Emissions Characteristics Of Aerospace F24 In A Constant Volume Combustion Chamber And A Common Rail Direct Injection Ci Engine, Richard C. Smith Iii Jan 2022

Investigations Of The Low Temperature Combustion Regions And Emissions Characteristics Of Aerospace F24 In A Constant Volume Combustion Chamber And A Common Rail Direct Injection Ci Engine, Richard C. Smith Iii

Electronic Theses and Dissertations

A study was conducted to investigate the low temperature combustion (LTC) regions of aerospace F24 and ULSD in the static setting of a CVCC and the dynamic setting of a CRDI research engine. This research is conducted to reduce in-cylinder emissions by understanding and implementing a technique to achieve an extended LTC. Emissions data for this study were collected during the operation of the CRDI research engine with a MKS 2030 FTIR and an AVL Microsoot 483. The parameters researched within the static setting of the CVCC included the determinations of the cool flames and NTC regions within the LTHR …


Injection Studies On A Small-Scale Rotating Detonation Engine With Improved Flow Control, Jonathan J. Wyatt Dec 2021

Injection Studies On A Small-Scale Rotating Detonation Engine With Improved Flow Control, Jonathan J. Wyatt

Theses and Dissertations

The Rotating Detonation Engine (RDE) has gained increasing attention in recent years for its potential advantages over typical deflagration combustion. A Micro-RDE design with an outer diameter of 28mm operating on Nitrous Oxide and Ethylene was recently developed, which stretched the limits of small-scale detonation engines. The testing on this rig has shown a stable one wave mode detonation with frequencies reaching 16.8 kHz. Key parameters that influence the detonation wave mode are cell size, fill height, and wave speed, which are heavily influence d by injection schemes. Previous testing utilized a partially premixed jets in crossflow (JIC) injection scheme, …


Investigations Of The Negative Temperature Coefficient Region Of Sustainable Aviation Fuels For Mitigation Of Global Warming, Richard C. Smith Iii Nov 2021

Investigations Of The Negative Temperature Coefficient Region Of Sustainable Aviation Fuels For Mitigation Of Global Warming, Richard C. Smith Iii

Honors College Theses

An investigation was led to determine the correlations between the durations of Ignition Delay (ID), Combustion Delay (CD), Derived Cetane Number (DCN), Negative Temperature Coefficient (NTC), Low-Temperature Heat Release (LTHR) regions, ringing intensity, and precent mass burn, and the effect of blending the Fischer-Tropsch (F-T) synthetic aerospace fuel (SAF), iso-paraffinic kerosene (IPK), with petroleum derived Jet-A aerospace fuel on these regions. Neat blends of Jet-A and IPK and three by mass blends of the fuels will be researched. These blends include mass percentages of 75%Jet-A and 25%IPK (75Jet-A25IPK), 50%Jet-A 50%IPK (50Jet-A50IPK), and 25%Jet-A 75%IPK (25Jet-A75IPK). The study will utilize a …


Numerical Modeling Of Advanced Propulsion Systems, Peetak P. Mitra Oct 2021

Numerical Modeling Of Advanced Propulsion Systems, Peetak P. Mitra

Doctoral Dissertations

Numerical modeling of advanced propulsion systems such as the Internal Combustion Engine (ICE) is of great interest to the community due to the magnitude of compute/algorithmic challenges. Fuel spray atomization, which determines the rate of fuel-air mixing, is a critical limiting process for the phenomena of combustion within ICEs. Fuel spray atomization has proven to be a formidable challenge for the state-of-the-art numerical models due to its highly transient, multi-scale, and multi-phase nature. Current models for primary atomization employ a high degree of empiricism in the form of model constants. This level of empiricism often reduces the art of predictive …


Improving The Performance Of An Ead Aircraft By Use Of A Retractable Electrode System, Michael Alexander Fredricks May 2021

Improving The Performance Of An Ead Aircraft By Use Of A Retractable Electrode System, Michael Alexander Fredricks

Mechanical Engineering Undergraduate Honors Theses

Electroaerodynamic (EAD) propulsion is a growing area of research for small, low powered aircraft. Recent tests of EAD aircraft have demonstrated low performance in unpowered, gliding flight. The purpose of this paper is to investigate the effect of a retractable electrode system on the flight performance of an EAD aircraft. An analysis of electrode drag contribution on the MIT ionic wind plane’s performance predicts a maximum lift to drag ratio of 22, with the addition of a retractable electrode system, for a similarly sized and modeled EAD aircraft. An experiment is developed using a prototype aircraft, launcher, and retraction system …


Analysis On Fuel Options For Scramjet Engines With The Study To Lower The Starting Mach Number, Sumantra Luitel, Gagan Dangi May 2021

Analysis On Fuel Options For Scramjet Engines With The Study To Lower The Starting Mach Number, Sumantra Luitel, Gagan Dangi

Honors Theses

The main objectives of this report were to perform analysis of an ideal scramjet engine, to assess the influence of fuel on endurance factor, and the possibility of lowering the starting Mach Number of the scramjet. In the first part, an ideal cycle parametric analysis was conducted on three different fuels i.e. Liquid Hydrogen (LH2), Jet Propellant 7 (JP-7), and Rocket Propellant (RP-1), taking into account their availability, physical properties, current uses, and potential uses. The detailed analysis is done largely relying on a 9 step Parametric Cycle Analysis technique to study how fuel properties influence the variation of seven …


Ram Air-Turbine Of Minimum Drag, Raymond Akagi Mar 2021

Ram Air-Turbine Of Minimum Drag, Raymond Akagi

Master's Theses

The primary motivation for this work was to predict the conditions that would yield minimum drag for a small Ram-Air Turbine used to provide a specified power requirement for a small flight test instrument called the Boundary Layer Data System. Actuator Disk Theory was used to provide an analytical model for this work.

Classic Actuator Disk Theory (CADT) or Froude’s Momentum Theory was initially established for quasi-one-dimensional flows and inviscid fluids to predict the power output, drag, and efficiency of energy-extracting devices as a function of wake and freestream velocities using the laws of Conservations of Mass, Momentum, and Energy. …


Design And Analysis Of A Compact Combustor For Integration With A Jetcat P90 Rxi, Daniel Holobeny Mar 2020

Design And Analysis Of A Compact Combustor For Integration With A Jetcat P90 Rxi, Daniel Holobeny

Theses and Dissertations

Ultra Compact Combustors are a novel approach to modern gas turbine combustor designs that look to reduce the overall combustor length and weight. A previous study integrated an Ultra Compact Combustor into a JetCat P90 RXi turbine engine and achieved self-sustained operation with a length savings of 33% relative to the stock combustor. However, that combustor could not operate across the full stock engine performance range due to flameout at increased mass ow rates as reactions were pushed out of the primary zone. To ensure reactions stayed in the primary zone, a new design with a larger combustor volume was …


Detonation Confinement In A Radial Rotating Detonation Engine, Kavi Muraleetharan Mar 2020

Detonation Confinement In A Radial Rotating Detonation Engine, Kavi Muraleetharan

Theses and Dissertations

Radial Rotating Detonation Engines (RRDE) have provided an opportunity for use of a pressure-gain combustor in a more compact form compared to an axial RDE. A successfully tested RRDE has operated over a wide range of test conditions and produced detonation modes with one, two, and three waves. The presence of multiple waves located the detonation waves to the outer radius, while one wave modes operated closer to the inner radius. Locating the detonation wave closer to the inner diameter resulted in less time for combustion prior to the radial turbine. Subsequently, this tended to decrease efficiency. To attempt to …


Generation Of Premix Laminar Flame Speed Library, Sai Prashanth Kumar Jan 2020

Generation Of Premix Laminar Flame Speed Library, Sai Prashanth Kumar

Dissertations, Master's Theses and Master's Reports

The Laminar flame speed is an essential parameter in measuring turbulent premixed combustion applied in Spark ignition engines. Instead of using power-law correlations, which is valid only for particular ranges, the procedure for generating a premixed laminar flame speed library is defined using MTU – Master mechanism for a wide range of charge mixture conditions inside an engine combustion chamber: Temperature (300 – 700 K), Pressure (1 – 70 bar) and reactant mixture composition of equivalence ratio (0.4 – 2.0) Laminar flame speed library is generated for methane. The mechanism's performance was improved by adjusting the pre-exponential factor of the …


Rocket Motor Nozzle, Corey Hillegass Jan 2020

Rocket Motor Nozzle, Corey Hillegass

Williams Honors College, Honors Research Projects

For this honors research and senior design project, the authors will research, analyze, and manufacture a rocket motor nozzle for the Akronauts rocket design team. This research and design project will improve how the rocket design team will decide and manufacture nozzles going forward. The impact of this improvement allows the rocket design team to take steps toward being self-sustaining by manufacturing student designed parts as opposed to commercially bought parts. This will not only be successful in increasing student impact on future designs, but also provides a technical challenge for the authors and will present as an impressive feat …


Characterizing Premixed Syngas Combustion In Micro-Channels, Sunita Pokharel Jan 2020

Characterizing Premixed Syngas Combustion In Micro-Channels, Sunita Pokharel

Graduate Theses, Dissertations, and Problem Reports

Increasing demands in the next-generation portable power-generation devices such as unmanned aerial vehicles (UAV), microsatellite thrusters, micro-chemical reactors and sensors calls for fuels with high specific energy and low emissions to meet the current demand of green energy. Fuel-lean synthesis gas (syngas) meets both these requirements exhibiting a promising route to a clean and green environment. Thus, it is of critical importance to characterize syngas combustion and understand its properties in the micro-combustion industry. In addition to complicated flame dynamics in microscale systems, varying the syngas-fuel mixture composition as well as the boundary conditions and geometry of a combustor significantly …


Validation Of Rhocentralfoam For Engineering Applications Of Under-Expanded Impinging Free Jets, Peter Nielsen Oct 2019

Validation Of Rhocentralfoam For Engineering Applications Of Under-Expanded Impinging Free Jets, Peter Nielsen

Electronic Thesis and Dissertation Repository

A numerical validation study of under-expanded impinging jet is conducted using OpenFOAM, an open-source computational fluid dynamics (CFD) library. RhoCentralFoam, a density based, compressible flow solver with a two-equation shear stress transport (SST) turbulence model is used on an axisymmetric model to reduce the computation cost. Major features of the flow were compared to an experimental study by Henderson et al., with a nozzle pressure ratio (NPR) of 4.0 and nozzle to plate spacing between 1.65-4.16. Of the features measured, the Mach diamond spacing, super-sonic core, and shear layer are all accurately predicted, while the recirculation bubble in the impingement …