Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Mechanical Engineering

Multiscale Modeling And Gaussian Process Regression For Applications In Composite Materials, Joshua Arp Aug 2023

Multiscale Modeling And Gaussian Process Regression For Applications In Composite Materials, Joshua Arp

All Dissertations

An ongoing challenge in advanced materials design is the development of accurate multiscale models that consider uncertainty while establishing a link between knowledge or information about constituent materials to overall composite properties. Successful models can accurately predict composite properties, reducing the high financial and labor costs associated with experimental determination and accelerating material innovation. Whereas early pioneers in micromechanics developed simplistic theoretical models to map these relationships, modern advances in computer technology have enabled detailed simulators capable of accurately predicting complex and multiscale phenomena.

This work advances domain knowledge via two means: firstly, through the development of high-fidelity, physics-based finite …


Compressive Strength Of Continuous Fiber Unidirectional Composites, Ronald Thompson May 2012

Compressive Strength Of Continuous Fiber Unidirectional Composites, Ronald Thompson

All Dissertations

Dow and Rosen's work in 1965 formed an intellectual framework for compressive strength of unidirectional composites. Compressive strength was explained in terms of micro-buckling, in which filaments are beams on an elastic foundation. They made simplifying assumptions, with a two dimensional idealization and linearized material properties. This study builds on their model, recognizing that the shear mode of instability drives unidirectional compressive strength. As a necessary corollary, the predictive methods developed in this study emphasize correct representation of composite shear stiffness. Non-linear effects related to matrix material properties, fiber misalignment, three dimensional representation, and thermal prestrains are taken into account. …


Constrained Layer Damping Of Honeycomb Composite Structures, Rohit Telukunta Aug 2011

Constrained Layer Damping Of Honeycomb Composite Structures, Rohit Telukunta

All Theses

Composite sandwich structures have replaced homogenous dense solids in many applications due to their advantages of high stiffness to weight ratio, and higher damping characteristics. Higher damping in engineering applications is desirable to reduce structural vibrations. The application of a viscoelastic layer between two thin face sheets gives rise to the concept of constrained layer damping which is an effective technique to achieve increased damping in engineering applications.
Honeycomb cellular structures are often used for the core in sandwich construction because of their low density and high stiffness properties. Regular honeycombs are defined by conventional hexagonal geometry, which gives rise …