Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Polymer and Organic Materials

Theses/Dissertations

Institution
Keyword
Publication Year
Publication

Articles 121 - 132 of 132

Full-Text Articles in Mechanical Engineering

Silica Nanoparticle-Based Coatings With Superhydrophilic And Superhydrophobic Properties, Robert Andrew Fleming Dec 2012

Silica Nanoparticle-Based Coatings With Superhydrophilic And Superhydrophobic Properties, Robert Andrew Fleming

Graduate Theses and Dissertations

Superhydrophilic and superhydrophobic surfaces have potential for implementation into a variety of fields, including self-cleaning surfaces, anti-fogging transparent materials, and biomedical applications. In this study, sandblasting, oxygen plasma treatments, silica nanoparticle films, and a low surface energy fluorocarbon film were employed to change the natural surface wettability of titanium, glass, and polyethylene terephthalate (PET) substrates, with an aim to produce superhydrophilic and superhydrophobic behavior. The effects of these surface modifications are characterized by water contact angles (WCAs), surface wetting stability, surface morphology and roughness, surface elemental composition, and optical transmittance measurements. The results show that stable superhydrophilic and superhydrophobic surfaces …


Design, Fabrication, Testing Of Cnt Based Isfet And Characterization Of Nano/Bio Materials Using Afm, Zhuxin Dong Dec 2012

Design, Fabrication, Testing Of Cnt Based Isfet And Characterization Of Nano/Bio Materials Using Afm, Zhuxin Dong

Graduate Theses and Dissertations

A combination of Carbon Nanotubes (CNTs) and Ion Selective Field Effect Transistor (ISFET) is designed and experimentally verified in order to develop the next generation ion concentration sensing system. Micro Electro-Mechanical System (MEMS) fabrication techniques, such as photolithography, diffusion, evaporation, lift-off, packaging, etc., are required in the fabrication of the CNT-ISFET structure on p-type silicon wafers. In addition, Atomic Force Microscopy (AFM) based surface nanomachining is investigated and used for creating nanochannels on silicon surfaces. Since AFM based nanomanipulation and nanomachining is highly controllable, nanochannels are precisely scratched in the area between the source and drain of the FET where …


Development Of A Novel Handheld Device For Active Compensation Of Physiological Tremor, Abhijit Saxena Oct 2012

Development Of A Novel Handheld Device For Active Compensation Of Physiological Tremor, Abhijit Saxena

Electronic Thesis and Dissertation Repository

In microsurgery, the human hand imposes certain limitations in accurately positioning the tip of a device such as scalpel. Any errors in the motion of the hand make microsurgical procedures difficult and involuntary motions such as hand tremors can make some procedures significantly difficult to perform. This is particularly true in the case of vitreoretinal microsurgery. The most familiar source of involuntary motion is physiological tremor. Real-time compensation of tremor is, therefore, necessary to assist surgeons to precisely position and manipulate the tool-tip to accurately perform a microsurgery. In this thesis, a novel handheld device (AID) is described for compensation …


Biaxial & Twist Testing Of Composite Carbon-Fiber Sandwich Panels For Automotive Racing Vehicles, Erik Eckberg Jun 2012

Biaxial & Twist Testing Of Composite Carbon-Fiber Sandwich Panels For Automotive Racing Vehicles, Erik Eckberg

Materials Engineering

Composite sandwich panels were constructed with 4-ply plain weave carbon-fiber/epoxy face sheets in the 0o/45o/0o/45o orientation and 1/8th inch Nomex honeycomb core. The panels were cut into 5-inch square test plates for mechanical testing. All testing was done on a fixture designed and fabricated by Pratt & Miller Engineering and installed on an Instron testing system at Cal Poly. The twist test was performed by supporting diagonal corners of the plate while simultaneously loading the opposite two corners at a crosshead rate of .06 in/min (ASTM 3044-94R11). Out of 10 panels tested, …


Advanced Design Optimization For Composite Structure: Stress Reduction, Weight Decrease And Manufacturing Cost Savings, Shayan Ahmadian May 2012

Advanced Design Optimization For Composite Structure: Stress Reduction, Weight Decrease And Manufacturing Cost Savings, Shayan Ahmadian

Master's Theses

An injection moldable chopped fiber composite actuator with detailed drawing and tolerances was designed within one year. A vendor was selected and a quote for injection molding tooling cost for production was obtained and the first prototype was built in addition of six months. The risks are identified and material characterization tests are proposed.

The objective of this project was redesigning an aluminum made actuator with a continuous fiber composite for weight saving purposes. After searching the literature and consulting with experts in the field it was concluded that manufacturing costs associated with continuous fiber composite are 3 times as …


Modeling And Control Of A Flexible Ionic Polymer Metal Composite(Ipmc) Actuator For Underwater Propulsion, Shivakanth Gutta Dec 2011

Modeling And Control Of A Flexible Ionic Polymer Metal Composite(Ipmc) Actuator For Underwater Propulsion, Shivakanth Gutta

UNLV Theses, Dissertations, Professional Papers, and Capstones

The goal of this research is to model and control the underwater vehicle propelled by IPMC actuator. IPMC consists of an ionic membrane sandwiched between two metallic electrodes. When an external voltage is applied, IPMC undergoes large deformation due to transport of ions. Due to its ability to work in aqueous environments, it can be used for developing small scale underwater vehicles.

First, Finite element approach is used to describe the dynamics of the both single and segmented IPMC actuator. In the approach presented, each element is attached with a local coordinate system that undergoes rigid body motion along with …


Irrigation Leak Detection: Using Flow Rate Sensors To Detect Breaks In An Irrigation System, Adam Openshaw, Kalvin Vu Jun 2010

Irrigation Leak Detection: Using Flow Rate Sensors To Detect Breaks In An Irrigation System, Adam Openshaw, Kalvin Vu

Computer Engineering

This report details the exploration and invention of a mechanism that can detect breaks in an irrigation system. With the ultimate goal of conserving water, we have designed an inexpensive, self sustaining flow rate monitor that can be used to identify anomalies in an irrigation system and wirelessly communicate the status of the system to a base station. Our implementation can also determine the direction of the anomaly based on the nature of the anomaly itself. This means that multiple monitors can be used to pinpoint the location of a break within the system in addition to merely detecting its …


Design And Development Of Rapid Battery Exchange Systems For Electric Vehicles To Be Used As Efficient Student Transportation, Jonathan A. Bevier Jul 2009

Design And Development Of Rapid Battery Exchange Systems For Electric Vehicles To Be Used As Efficient Student Transportation, Jonathan A. Bevier

Master's Theses

Rapid battery exchange systems were built for an electric van and pedal assist electric bike as a method of eliminating the need to recharge the vehicles batteries in order to increase the feasibility of using electric propulsion as a method of efficient student transportation. After selecting proper materials it was found that the systems would need a protective coating to ensure consistent operation. 1020 cold rolled steel samples coated with multiple thicknesses of vinyl resin paint, epoxy resin paint, and powder coating were subjected to environmental wear tests in order to determine if the type and thickness of common protective …


The Effects Of Machining On Structure And Tribological Properties Of Ultra High Molecular Weight Polyethylene For Artificial Joint Prostheses, Jinshan Song Jan 1997

The Effects Of Machining On Structure And Tribological Properties Of Ultra High Molecular Weight Polyethylene For Artificial Joint Prostheses, Jinshan Song

Masters Theses

Understanding the effect of machining on the structure and property of subsurface layer of ultra high molecular weight polyethylene (UHMWPE) can significantly facilitate the increase in longevity of artificial joints. This study was performed to investigate the machining effects on the polymeric structure and tribological properties. Machining parameters include cutting speed, tool feed rate and depth of cut. Temperature rise was studied during machining to assess the extent of thermal degradation due to machining. Polymeric structure of the semicrystalline polymer was characterized using differential scanning calorimetry (DSC) in terms of melting enthalpy, crystallinity and melting temperature. Surface texture and hardness …


Mechanical And Tribological Properties Of Composites Of Recycled High Density Polyethylene And Recycled Rubber, Jason G. Boulanger Jan 1997

Mechanical And Tribological Properties Of Composites Of Recycled High Density Polyethylene And Recycled Rubber, Jason G. Boulanger

Masters Theses

This thesis presents a study on the mechanical and tribological properties of composite materials of recycled high density polyethylene (HDPE) and recycled rubber tire particles. The materials were compounded by extrusion and formed into test specimens by injection molding.

The first experiment studied the effect of recycled rubber percentage on mechanical properties of composites of recycled HDPE and recycled rubber. The mechanical properties included tensile strength, percent elongation, hardness, and impact resistance. Recycled rubber concentrations of 0, 5, 10, 15, 20, 25, and 30 percent were tested. The second experiment investigated the tribological properties of recycled HDPE and recycled rubber …


Fiber Enhanced Viscoelastic Damping Polymers And Their Application To Passive Vibration Control, Houchun Xia Jul 1993

Fiber Enhanced Viscoelastic Damping Polymers And Their Application To Passive Vibration Control, Houchun Xia

Mechanical & Aerospace Engineering Theses & Dissertations

A new composite damping material is investigated, which consists of a viscoelastic matrix and high elastic modulus fiber inclusions. This fiber enhanced viscoelastic damping polymer is intended to be applied to light-weight flexible structures as surface treatment for passive vibration control. A desirable packing geometry for the composite material is proposed, which is expected to produce maximum shear strain in the viscoelastic damping matrix. Subsequently, a micromechanical model is established in which the effect of fiber segment length and relative motion between neighboring fibers are taken into account. Based on this model, closed form expressions for the effective storage and …


Analysis Of Moisture Absorption And Diffusion In Fiber Reinforced Polymeric Resin-Matrix Composite Materials, Stephen Stern Tompkins Apr 1978

Analysis Of Moisture Absorption And Diffusion In Fiber Reinforced Polymeric Resin-Matrix Composite Materials, Stephen Stern Tompkins

Mechanical & Aerospace Engineering Theses & Dissertations

The diffusion of moisture through fiber reinforced polymeric-matrix composite materials has been studied analytically. The diffusion in the orthotropic, nonhomogeneous material was modeled, in detail, with a two-dimensional transient diffusion analysis. An effective diffusivity for the composite was determined in terms of the fiber volume fraction and the resin diffusivity. This effective diffusivity is in better agreement with recent data than those previously determined using less complex models.

The influence of both material and environmental parameters on the moisture content of the composite was determined analytically. Predicted moisture contents were compared over a wide range of values for emittance, solar …