Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 21 of 21

Full-Text Articles in Mechanical Engineering

Stress Relaxation Cracking In 347h Austenitic Steel Weldments Under Various Heat Treatments: Experiments And Modeling, Yi Yang Dec 2023

Stress Relaxation Cracking In 347h Austenitic Steel Weldments Under Various Heat Treatments: Experiments And Modeling, Yi Yang

Doctoral Dissertations

347H austenitic stainless steel exhibits exceptional creep and corrosion resistance, rendering it an exemplary candidate for pipeline materials, particularly in mid- to high-temperature working conditions. However, due to constraints in component dimensions, welding has been chosen as the preferred method for joining pipeline systems extensively employed in nuclear power plants, fossil fuel plants, and petrochemical companies. The welding process entails the accumulation of residual stress during the cooling stage, along with the introduction of microstructure evolution. Moreover, the residual stress field and microstructure continuously evolve under service conditions, thereby intensifying the susceptibility of crack initiation and propagation. The initial residual …


Processing Of Preceramic Polymers For Direct-Ink Writing, James W. Kemp Dec 2021

Processing Of Preceramic Polymers For Direct-Ink Writing, James W. Kemp

Doctoral Dissertations

Preceramic polymers are organosilicon polymers that, when pyrolyzed to above 1000°C, convert from a polymer to an amorphous ceramic. These polymers have been used for fiber spinning, polymer infiltration, and casting of materials but have recently gained interest for use as the feedstock material for additive manufacturing techniques. This work explores preceramic polymers being used for direct-ink writing (an additive manufacturing method) and many of the issues that occur with the polymers during curing and pyrolysis.

The first chapter of this dissertation provides a review of preceramic polymers, while the second and third chapters focus on the development of inks …


Structural Stability Of Thermosets During Material Extrusion Additive Manufacturing, Stian K. Romberg Dec 2021

Structural Stability Of Thermosets During Material Extrusion Additive Manufacturing, Stian K. Romberg

Doctoral Dissertations

Over the past decade, the scale of polymer additive manufacturing has been revolutionized with machines that print massive thermoplastic parts with greater geometric complexity than can be achieved by traditional manufacturing methods. However, the heat required to print thermoplastics consumes energy and induces thermal gradients that can reduce manufacturing flexibility and final mechanical properties. With the ability to be extruded at room temperature and excellent compatibility with fibers and fillers, thermoset resins show promise to decrease the energy consumption, expand the manufacturing flexibility, and broaden the material palette offered by large-scale polymer additive manufacturing. However, structural instability in the uncured …


Interfacial Bonding Between Thermoset And Thermoplastic Polyurethane Reinforced Textile Grade Carbon Fiber: Structure Property Relationships, Surbhi Subhash Kore Dec 2021

Interfacial Bonding Between Thermoset And Thermoplastic Polyurethane Reinforced Textile Grade Carbon Fiber: Structure Property Relationships, Surbhi Subhash Kore

Doctoral Dissertations

The research work focused on examining the interfacial adhesion of unsized, epoxy, and urethane-sized textile grade carbon fiber (TCF) reinforced in different classes of polyurethane (PU) thermoplastic (TPU) and thermoset (TSU) polyurethane (PU) through the structure-property relationship. The Carbon Fiber Technology Facility (CFTF) at Oak Ridge National Laboratory (ORNL) has produced TCF to reduce the cost of commercial-grade carbon fiber. The first part of the research examined the fundamental relationships between (a) soft segment thermoplastic polyurethane (S-TPU), (b) hard segment thermoplastic polyurethane (H-TPU), (c) thermoset polyurethane (TSU) and TCF reinforcement’s molecular behavior at the interface using the surface and thermal …


Innovations In Aligned And Overmolded Long Fiber Thermoplastic Composites, Shailesh P. Alwekar Dec 2021

Innovations In Aligned And Overmolded Long Fiber Thermoplastic Composites, Shailesh P. Alwekar

Doctoral Dissertations

Long fiber thermoplastic (LFT) composite materials are increasingly used in high performance lightweight automotive, sporting, and industrial applications. LFT composites are processed with extrusion-compression molding (ECM) and/or injection molding (IM). Melt extrusion offers unique opportunities to align long fibers in a thermoplastic polymer melt. The properties of LFT materials are highly influenced by processing techniques which leads to different porosity content, fiber length distribution, and fiber orientation distribution. Hence, it is important to understand the various LFT processing techniques and their effect on mechanical, thermal, and microscopic properties.

The fundamental process-property relationships in LFT composites are investigated in this dissertation. …


Transients In Plastic Instabilities During Thermo-Mechanical Reversals In An Additively Manufactured Ti6al4v, Sabina C. Kumar Aug 2021

Transients In Plastic Instabilities During Thermo-Mechanical Reversals In An Additively Manufactured Ti6al4v, Sabina C. Kumar

Doctoral Dissertations

A complex interaction of process variables in an evolving geometry during Additive Manufacturing (AM), can bring about spatial and temporal transients of temperature and stress within each layer in a part. Although AM shares commonalities with conventional processing techniques such as casting, welding, and thermo-mechanical process, published literature has shown that the steady-state conditions are not strictly valid during AM process. Macro-scale fluctuations of thermal gradients (dT/dx: 103 to 107 K/m) combined with local changes in thermal expansion coefficients, crystallographic strains and localized stress-strain constitutive properties in conjunction with thermal cycles, can bring about a plastic strain gradient …


3d Printing Of Hybrid Architectures Via Core-Shell Material Extrusion Additive Manufacturing, Robert Cody Pack May 2021

3d Printing Of Hybrid Architectures Via Core-Shell Material Extrusion Additive Manufacturing, Robert Cody Pack

Doctoral Dissertations

Biological materials often employ hybrid architectures, such as the core-shell motif present in porcupine quills and plant stems, to achieve unique properties and performance. Drawing inspiration from these natural materials, a new method to fabricate lightweight and stiff core-shell architected filaments is reported. Specifically, a core-shell printhead conducive to printing highly loaded fiber-filled inks, as well as a new low-density syntactic foam ink, are utilized to 3D-print core-shell architectures consisting of a syntactic epoxy foam core surrounded by a stiff carbon fiber-reinforced epoxy composite shell. Effective printing of test specimens and structures with controlled geometry, composition, and architecture is demonstrated …


Process-Structure-Property Relationships In 3d-Printed Epoxy Composites Produced Via Material Extrusion Additive Manufacturing, Nadim S. Hmeidat May 2021

Process-Structure-Property Relationships In 3d-Printed Epoxy Composites Produced Via Material Extrusion Additive Manufacturing, Nadim S. Hmeidat

Doctoral Dissertations

Extrusion-based additive manufacturing (AM) technologies, such as direct ink writing (DIW), offer unique opportunities to create composite materials and novel multi-material architectures that are not feasible using other AM technologies. DIW is a novel 3D-printing approach in which viscoelastic inks, with favorable rheological properties, are extruded through fine nozzles and patterned in a filament form at room temperature.

Recent developments in DIW of polymer composites have led to expanding the range of materials used for printing, as well as introducing novel deposition strategies to control filler orientation and create improved functional/structural composite materials. Despite these substantial advancements, the successful and …


Development Of Data Science Tools For Part Qualification In Additive Manufacturing, Sujana Chandrasekar May 2021

Development Of Data Science Tools For Part Qualification In Additive Manufacturing, Sujana Chandrasekar

Doctoral Dissertations

In recent years, metal additive manufacturing processes have become popular choices for part production especially for low volume, high complexity parts. To enable widespread adoption of these methods, it is essential to understand the link between process parameters and part properties. This is particularly because additive manufacturing processes cause inherently complex thermo-mechanical cycles and drastically different local process conditions within a part, compared to conventional manufacturing processes like casting and forging. Additionally, properties of feedstock material like metal powder impact final part properties. The focus of this dissertation is on development of data-driven methods using in situ monitoring, as a …


Processing-Structure-Performance Relationships In Fused Filament Fabricated Fiber Reinforced Abs For Material Qualification, William Howard Ferrell Dec 2020

Processing-Structure-Performance Relationships In Fused Filament Fabricated Fiber Reinforced Abs For Material Qualification, William Howard Ferrell

Doctoral Dissertations

This dissertation uses the processing-structure-performance relationships to elucidate future needs in qualification of materials manufactured by fused filament fabrication and also introduces a previously unused testing method for the determination of fracture toughness in these materials. Fused filament fabrication (FFF) is an additive manufacturing technique that utilizes the layering of deposited molten plastic in two dimensional shapes to create three dimensional objects. This technique has gained traction over the past two decades as a disruptive manufacturing technology that promises many benefits. In order for FFF to truly be a staple in manufacturing spaces across the world for the production of …


Characterization Of A Digital Holography Diagnostic For In Situ Erosion Measurement Of Plasma-Facing Components In Fusion Devices, Cary Dean Smith Dec 2020

Characterization Of A Digital Holography Diagnostic For In Situ Erosion Measurement Of Plasma-Facing Components In Fusion Devices, Cary Dean Smith

Doctoral Dissertations

Fusion energy devices, particularly tokamaks, face the challenge of interior surface damage occurring over time from the heat flux of the high-energy plasma they generate. The ability to monitor the rate of surface modification is therefore imperative, but to date no proven technique exists for real-time erosion measurement of planar regions of interest on plasma-facing components in fusion devices. In order to fill this diagnostic gap, a digital holography system has been established at ORNL [Oak Ridge National Laboratory] for the purpose of measuring the erosion effects of plasma-material interaction in situ.

The diagnostic has been designed with the …


Cracking And Earing Phenomenon In Deep-Drawn Stainless Steel Alloys: Role Of Transformation Kinetics, Microstructure, And Texture, Peijun Hou Aug 2020

Cracking And Earing Phenomenon In Deep-Drawn Stainless Steel Alloys: Role Of Transformation Kinetics, Microstructure, And Texture, Peijun Hou

Doctoral Dissertations

The enhancement of formability of advanced high-strength TRIP-assisted steel alloys is a challenging assignment for industrial application due to the cracking phenomenon. The critical factor governing the cracking behavior is residual-stress concentration resulting from the inhomogeneous plastic deformation and microstructural evolution during the forming processes. Martensitic phase transformation kinetics, constituent phases, and crystallographic texture in TRIP-assisted steel alloys are correlated to the microstructure evolution, resulting in phase-specific stress concentration. In the current study, we are aiming at understanding the fundamental mechanisms responsible for the cracking phenomenon and thus improving the formability of TRIP-assisted steel alloys. Four stainless steel (SS) alloys …


Correlating Long-Term Lithium Ion Battery Performance With Solid Electrolyte Interphase (Sei) Layer Properties, Seong Jin An Aug 2017

Correlating Long-Term Lithium Ion Battery Performance With Solid Electrolyte Interphase (Sei) Layer Properties, Seong Jin An

Doctoral Dissertations

This study was conducted to understand effects of some of key factors (i.e., anode surface properties, formation cycling conditions, and electrolyte conditions) on solid electrolyte interphase (SEI) formation in lithium ion batteries (LIBs) and the battery cycle life. The SEI layer passivates electrode surfaces and prevents electron transfer and electrolyte diffusion through it while allowing lithium ion diffusion, which is essential for stable reversible capacities. It also influences initial capacity loss, self-discharge, cycle life, rate capability and safety. Thus, SEI layer formation and electrochemical stability are primary topics in LIB development. This research involves experiments and discussions on key factors …


Deterministic Neutron Transport And Multiphysics Experimental Safety Analyses At The High Flux Isotope Reactor, Christopher James Hurt Dec 2016

Deterministic Neutron Transport And Multiphysics Experimental Safety Analyses At The High Flux Isotope Reactor, Christopher James Hurt

Doctoral Dissertations

The computational ability to accurately predict the conditions in an experiment under irradiation is a valuable tool in the operation of a research reactor whose scientific mission includes isotope production, materials irradiation, and neutron activation analysis. Understanding of different governing physics is required to ascertain satisfactory conditions within the experiment: the neutron transport behavior throughout the reactor and the coupled behavior of heat transfer, structural mechanics and fluid flow. Computational methods and tools were developed for robust numerical analysis of experiment behavior at the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR), including fully-coupled thermo-mechanics in three plutonium-238 …


Inter-Droplet Membranes For Mechanical Sensing Applications, Nima Tamaddoni Jahromi May 2016

Inter-Droplet Membranes For Mechanical Sensing Applications, Nima Tamaddoni Jahromi

Doctoral Dissertations

This dissertation combines self-assembly phenomena of amphiphilic molecules with soft materials to create and characterize mechanoelectrical transducers and sensors whose sensing elements are thin-film bioinspired membranes comprised of phospholipids or amphiphilic polymers. We show that the structures of these amphiphilic molecules tune the mechanical and electrical properties of these membranes. We show that these properties affect the mechanoelectrical sensing characteristic and range of operation of these membrane transducers. In the experiments, we construct and characterize a membrane-based hair cell embodiment that enables the membrane to be responsive to mechanical perturbations of the hair. The resulting oscillations of membranes formed between …


Energy Selective Neutron Imaging For The Characterization Of Polycrystalline Materials, Robin Woracek May 2015

Energy Selective Neutron Imaging For The Characterization Of Polycrystalline Materials, Robin Woracek

Doctoral Dissertations

This multipart dissertation focuses on the development and evaluation of advanced methods for material testing and characterization using neutron diffraction and imaging techniques. A major focus is on exploiting diffraction contrast in energy selective neutron imaging (often referred to as Bragg edge imaging) for strain and phase mapping of crystalline materials. The dissertation also evaluates the use of neutron diffraction to study the effect of multi-axial loading, in particular the role of applying directly shear strains from the application of torsion. A portable tension-torsion-tomography loading system has been developed for in-situ measurements and integrated at major user facilities around the …


A Study Of Indentation Cracking In Brittle Materials Using Cohesive Zone Finite Elements, Kurt E. Johanns May 2014

A Study Of Indentation Cracking In Brittle Materials Using Cohesive Zone Finite Elements, Kurt E. Johanns

Doctoral Dissertations

Cohesive zone finite element simulations of pyramidal indentation cracking in brittle materials have been carried out in order to: (1) critically examine indentation cracking models that relate fracture toughness to indentation data; (2) determine the underlying physical mechanisms of indentation crack growth from a continuum view and their relationship to material properties; (3) explore the influence of indenter geometry on crack extension; and (4) provide a platform from which future simulations can add more complex material behavior as well as guidance for experimental measurements of fracture toughness. Standard fracture toughness geometries in addition to simplified indentation geometries were simulated in …


Plasmonics Resonance Enhanced Active Photothermal Effects In Aluminum Nanoenergetics For Propulsion Applications, Jacques Abboud Aug 2013

Plasmonics Resonance Enhanced Active Photothermal Effects In Aluminum Nanoenergetics For Propulsion Applications, Jacques Abboud

Doctoral Dissertations

In this dissertation, aluminum nanoparticles (Al NPs) are shown capable to on-demand enhance and control the local photothermal energy deposition, both spatially and temporally, via active photothermal effects initiated by the localized surface plasmon resonance (LSPR) phenomenon, and amplified by the Al exothermal oxidation reactions. Experiments in dry and wet environments along with computational modeling of the photothermal process are very desirable for gaining fundamental understanding, ignition optimization and parameter exploration.

Combined phenomena of motion and ignition of Al NPs are explored first in this study. Both resulting from exposing a pile of the nanoenergetics in hand to a single …


Measurement Of Power-Law Creep Parameters By Instrumented Indentation Methods, Caijun Su Aug 2012

Measurement Of Power-Law Creep Parameters By Instrumented Indentation Methods, Caijun Su

Doctoral Dissertations

New experimental methods have been developed to measure the uniaxial power-law creep parameters α [alpha] and n in the relation έ[epsilon dot]=α[alpha]σn[sigma] (έ [epsilon dot] is the creep strain rate and σ [sigma] is the creep stress) from the load, time, displacement and stiffness data recorded during an instrumented indentation experiment performed with a conical or pyramidal indenter. The methods are based on an analysis of Bower et al., which relates the indentation creep rate to the uniaxial creep parameters based on simple assumptions about the constitutive behavior (Bower et al., 1993 …


Micromechanical Studies Of Intergranular Strain And Lattice Misorientation Fields And Comparisons To Advanced Diffraction Measurements, Lili Zheng Dec 2011

Micromechanical Studies Of Intergranular Strain And Lattice Misorientation Fields And Comparisons To Advanced Diffraction Measurements, Lili Zheng

Doctoral Dissertations

Inhomogeneous deformation fields arising from the grain-grain interactions in polycrystalline materials have been evaluated using a crystal plasticity finite element method and extensively compared to neutron diffraction measurements under fatigue crack growth conditions. The roles of intergranular deformation anisotropy, grain boundary damage, and non-common deformation mechanisms (such as twinning for hexagonal close packed crystals) are systematically evaluated. The lattice misorientation field can be used to determine the intragranular deformation behavior in polycrystals or to describe the deformation inhomogeneity due to dislocation plasticity in single crystals. The study of indentation-induced lattice misorientation fields in single crystals sheds lights on the understanding …


Energetics And Kinetics Of Dislocation Initiation In The Stressed Volume At Small Scales, Tianlei Li Dec 2010

Energetics And Kinetics Of Dislocation Initiation In The Stressed Volume At Small Scales, Tianlei Li

Doctoral Dissertations

Instrumented nanoindentation techniques have been widely used in characterizing mechanical behavior of materials in small length scales. For defect-free single crystals under nanoindentation, the onset of elastic-plastic transition is often shown by a sudden displacement burst in the measured load-displacement curve. It is believed to result from the homogeneous dislocation nucleation because the maximum shear stress at the pop-in load approaches the theoretical strength of the material and because statistical measurements agree with a thermally activated process of homogeneous dislocation nucleation. For single crystals with defects, the pop-in is believed to result from the sudden motion of pre-existing dislocations or …