Open Access. Powered by Scholars. Published by Universities.®

Structural Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Structural Materials

The Effects Of Varying Composition And Build Direction On Direct Metal Deposition Fabricated Inconel 718, Abigail P. Nilan, Jessica M. Fordham Jun 2018

The Effects Of Varying Composition And Build Direction On Direct Metal Deposition Fabricated Inconel 718, Abigail P. Nilan, Jessica M. Fordham

Materials Engineering

Inconel 718 (IN718) is a popular wrought superalloy, and is currently being investigated for additive manufacturing (AM) applications in the aerospace industry. However, overaging and the presence of microcracks have caused a significant reduction in properties. The purpose of this study is to meet or exceed the mechanical properties of wrought IN718 by varying the composition and build direction of the AM alloy. Alternative compositions were selected with Oerlilon Metco’s Rapid Alloy Development (RAD) software, and differ in niobium content, which increases the fraction of the primary strengthening phase (γʺ). Direct metal deposition (DMD) was used to fabricate the samples, …


Invariant-Based Method For Improving Efficiency Of Mechanical Testing In Aerospace Certification Of Carbon Fiber-Epoxy Composites, Alyssa Rina Gruezo, Erika Gabrielle Hansen Jun 2017

Invariant-Based Method For Improving Efficiency Of Mechanical Testing In Aerospace Certification Of Carbon Fiber-Epoxy Composites, Alyssa Rina Gruezo, Erika Gabrielle Hansen

Materials Engineering

The current challenge with qualification of carbon fiber composites in the aerospace industry would be the low efficiency of testing hundreds of samples. The Trace Theory strives to streamline the qualification process by utilizing a material’s Trace to predict properties of composites using Excel programs and basis data. To test this theory, predicted properties from the program, QuickLam, were compared to experimental data. Unidirectional 0° (T1), unidirectional 90° (T2), quasi-isotropic (T3), and hard quasi-isotropic (T4) laminates were made using HexTowR carbon fiber and TC250 resin provided by TenCate Advanced Composites. Tensile and compression tests were done according to ASTM D3039 …


High Cycle Rotating Bending Fatigue Of 6061-T6 Friction Stir Welded Extrusions, John Chang, Travis Miller Jun 2014

High Cycle Rotating Bending Fatigue Of 6061-T6 Friction Stir Welded Extrusions, John Chang, Travis Miller

Materials Engineering

Fatigue testing was done on friction stir welded joints of 6061-T6 aluminum extrusions. Tests were run using a rotating bending fatigue machine at stresses from 111.5 to 138.7 MPa. Failures occurred on the order of 105 to 107 cycles, and an S-N curve was generated based off of the failure results. After the samples failed, the location of the failure and the number of cycles to failure were noted. Fatigue samples were designed in SolidWorks with a tapered 2 inch reduced section. The 2 inch reduced section will include the entire weld region as seen from the microhardness …


Low Velocity Impact Tower Feasibility, Setup, And Impact Testing Of Carbon Fiber Reinforced Epoxy Thermoset And Peek Thermoplastic Matrix Composites, Brent Plehn Jun 2013

Low Velocity Impact Tower Feasibility, Setup, And Impact Testing Of Carbon Fiber Reinforced Epoxy Thermoset And Peek Thermoplastic Matrix Composites, Brent Plehn

Materials Engineering

A low velocity impact tower was donated to Cal Poly's Materials Engineering Department along with four fiber reinforced polymer matrix composites. The tower was set up in building 192 in the Mechanical Testing Laboratory. Improvements were made to the tower including adding velocity detection capabilities, making loose hardware inclusive, adding an extra tower arm for better consistency, adding a double jawed clamp for faster testing, and rerouting the tower's compressed air system to improve performance. A standard operating procedure was drafted, tested, and redrafted for impact testing composite panels. The four composite panels consisted of two quasi-isotropic 16 ply AS-1 …


Simplifying The Testing And Calculation Of Fracture Toughness Of Thermoplastic And Thermoset Matrix Composite Materials, James Shedden Jun 2013

Simplifying The Testing And Calculation Of Fracture Toughness Of Thermoplastic And Thermoset Matrix Composite Materials, James Shedden

Materials Engineering

Fracture toughness, or the ability of a material to resist fast fracture by crack propagation is an important property in the use of composite materials for structural designs. Other mechanical tests such as tensile, flexure, and compression are more established and practical than testing fracture toughness. Fracture toughness testing is less commonly used because it requires specific specimens and non-conventional test methods. In composite materials specifically, delamination of the plies of materials is tested for GIC and GIIC values to find the critical strain energy release rate of the two types of fracture modes. The common two tests …


Discontinuous Grain Boundaries Of Forged René 41, Steven Crump Jun 2012

Discontinuous Grain Boundaries Of Forged René 41, Steven Crump

Materials Engineering

Forged components must pass a grain size specification (grain size, distribution) for acceptance in an application. The varying amounts of plastic deformation during forging can lead to abnormally large recrystallized grain sizes in certain regions of the part, which will not pass specification. The question exists whether these abnormally coarse grains are truly comprised of poly crystalline fine grains with grain boundaries resistant to etching techniques. To investigate this abnormal grain size effect, a cross section of a forged René 41 nickel-based superalloy aircraft engine ring was cut and sectioned into six segments. Those segments were then prepared for microstructural …


Biaxial & Twist Testing Of Composite Carbon-Fiber Sandwich Panels For Automotive Racing Vehicles, Erik Eckberg Jun 2012

Biaxial & Twist Testing Of Composite Carbon-Fiber Sandwich Panels For Automotive Racing Vehicles, Erik Eckberg

Materials Engineering

Composite sandwich panels were constructed with 4-ply plain weave carbon-fiber/epoxy face sheets in the 0o/45o/0o/45o orientation and 1/8th inch Nomex honeycomb core. The panels were cut into 5-inch square test plates for mechanical testing. All testing was done on a fixture designed and fabricated by Pratt & Miller Engineering and installed on an Instron testing system at Cal Poly. The twist test was performed by supporting diagonal corners of the plate while simultaneously loading the opposite two corners at a crosshead rate of .06 in/min (ASTM 3044-94R11). Out of 10 panels tested, …


Effects Of Alternate Cementitious Materials On Compressive Strength And Environmental Impacts Of Cement Mix Designs., Mitchell R. Bush Jun 2012

Effects Of Alternate Cementitious Materials On Compressive Strength And Environmental Impacts Of Cement Mix Designs., Mitchell R. Bush

Materials Engineering

Specific proportions of Portland cement, fly ash, and blast furnace slag cement mixtures where chosen by a ternary phase diagram to be investigated. By experimental testing and company data history fly ash was limited to not exceed 30% and contribution of Portland cement must be over 50%. Ten chosen mix designs were batched by following ASTM C305-94 and cured for twenty-eight and forty-two days, the extended cure length allows the reaction of pozzolanic material with calcium hydroxide to complete. Compressive strength testing at forty-two days yielded low strength for mix designs with 20% or less Portland cement compared to our …


The Effects Of Cure Schedule On Properties Of Glass-Fiber Reinforced Epoxy Matrix Composites, Trevor J. Lee Jun 2011

The Effects Of Cure Schedule On Properties Of Glass-Fiber Reinforced Epoxy Matrix Composites, Trevor J. Lee

Materials Engineering

Two different two-component resin systems were cured, via Differential Scanning Calorimetry, for the times recommended by their respective manufacturers. The resin cure schedules were designed to simulate typical and attainable processing conditions; they were cured at 120°F, 140°F, and 160°F, and in-mold post-cured at 200°F, 230°F, and 260°F. The resulting scans were then compared to a baseline cure for each resin system, consisting of two heating-cooling cycles at a constant rate of temperature change. These baseline cures were then used to determine the percent cure of each sample and the shift in glass transition temperature between the baseline cure and …


Characterization Of The Relationship Between The Microstructure And Tensile Strength Of Annealed Ti-6al-4v, Aldo Corona Jun 2011

Characterization Of The Relationship Between The Microstructure And Tensile Strength Of Annealed Ti-6al-4v, Aldo Corona

Materials Engineering

Tensile coupons of Ti-6Al-4V were heat treated at varying annealing temperatures from 1200°F (648°C) to 1450°F (787°C) at 50°F (23°C) increments for 1 hour. The samples were air cooled to room temperature or furnace cooled to 800°F (426°C) followed by air cooling to room temperature. Four tensile coupons were treated at each annealing temperature and cooling rate. Alpha case was observed to form on the surface of the samples post heat treatment with a maximum depth of 25 µm (.001 in). Samples were tensile tested for their ultimate tensile strength, yield strength, and percent elongation. Samples across all annealing temperatures …