Open Access. Powered by Scholars. Published by Universities.®

Structural Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Structural Materials

Highly Vented Truss Wall Honeycomb Structures, David J. Sypeck Dec 2017

Highly Vented Truss Wall Honeycomb Structures, David J. Sypeck

Publications

A vented honeycomb structure with a plurality of honey­comb cells arranged in a hierarchical order and having a plurality of truss walls, each truss wall including a plurality of members. The vented honeycomb structure is fabricated by joining a plurality of sheets of trusses using any one of an expansion, a corrugation, and a slotting process. Fabri­cation can also occur by deposition, casting, additive, extru­sion, or aligning and joining methods. The honeycomb cells, truss walls, truss wall openings, and truss wall members can be functionally graded.


A Comparison Study Of Composite Laminated Plates With Holes Under Tension, Joun S. Kim Dec 2017

A Comparison Study Of Composite Laminated Plates With Holes Under Tension, Joun S. Kim

Master's Theses

A Comparison Study of Composite Laminated Plates with Holes under Tension

A study was conducted to quantify the accuracy of numerical approximations to deem sufficiency in validating structural composite design, thus minimizing, or even eliminating the need for experimental test. Error values for stress and strain were compared between Finite Element Analysis (FEA) and analytical (Classical Laminated Plate Theory), and FEA and experimental tensile test for two composite plate designs under tension: a cross-ply composite plate design of [(0/90)4]s, and a quasi-isotropic layup design of [02/+45/-45/902]s, each with a single, centered hole of 1/8” diameter, and 1/4" diameter (four sets …


Study Of Knowledge-Based System (Kbs) And Decision Making Methodologies In Materials Selection For Lightweight Aircraft Metallic Structures, Pashupati R. Adhikari, Reza Mirshams May 2017

Study Of Knowledge-Based System (Kbs) And Decision Making Methodologies In Materials Selection For Lightweight Aircraft Metallic Structures, Pashupati R. Adhikari, Reza Mirshams

Journal of Applied Science & Engineering Technology

This paper presents an overview of knowledge-based system (KBS) in the context of decision making methodologies used in materials selection for the design of light weight aircraft metallic structures. Overall aircraft weight reduction means substantially less fuel consumption and better efficiency. Part of the solution to this problem is to find a way to reduce overall weight of metallic structures in the aircraft. Two distinct multiple criteria decision making (MCDM) methodologies are presented with examples featuring a set of short-listed materials suitable in the design of the structures. Pre-defined constraint values, mainly mechanical properties, are employed as relevant attributes satisfying …


The Effect Of Biocomposite Material In A Composite Structure Under Compression Loading, Benjamin Andrew Sweeney Feb 2017

The Effect Of Biocomposite Material In A Composite Structure Under Compression Loading, Benjamin Andrew Sweeney

Master's Theses

While composite structures exhibit exceptional strength and weight saving possibilities for engineering applications, sometimes their overall cost and/or material performance can limit their usage when compared to conventional structural materials. Meanwhile ‘biocomposites’, composite structures consisting of natural fibers (i.e. bamboo fibers), display higher cost efficiency and unique structural benefits such as ‘sustainability’. This analysis will determine if the integration of these two different types of composites are beneficial to the overall structure. Specifically, the structure will consist of a one internal bamboo veneer biocomposite ply; and two external carbon fiber weave composite plies surrounding the bamboo biocomposite. To acquire results …


A Multiscale Model For Damage Progression And Detection In Piezo/Pyroelectric Composite Laminates, Yehia Bahei-El-Din, Amany Micheal Jan 2017

A Multiscale Model For Damage Progression And Detection In Piezo/Pyroelectric Composite Laminates, Yehia Bahei-El-Din, Amany Micheal

Centre for Advanced Materials

Assessment of damage initiation and progression in composite structures reinforced with electrically active filaments is modelled in a multiscale analysis. The analysis developed is a two-tier, interactive analysis, which involves two length scales; macroscopic, and microscopic. The proposed multiscale analysis provides seamless integration of the mechanics at the two length scales, including piezoelectric and pyroelectric coupling effects and damage under overall thermomechanical loads and an electric field applied to electroactive fibers. The macromechanical analysis is performed for multidirectional, fibrous laminates using the lamination theory, including bending, and the micromechanical analysis is performed using a two-phase model and a periodic array …


Detecting Laminate Damage Using Embedded Electrically Active Plies – An Analytical Approach, Amany Micheal, Yehia Bahei-El-Din Jan 2017

Detecting Laminate Damage Using Embedded Electrically Active Plies – An Analytical Approach, Amany Micheal, Yehia Bahei-El-Din

Centre for Advanced Materials

Assessment of damage initiation and progression in composite laminates with embedded electrically active plies is modeled. Utilizing electrically active layers embedded in composite laminates as damage sensors is proposed by several researchers and is mainly assessed experimentally. Sensing damage using embedded electrically active plies is generally preferred over the use of surface mounted PZT wafers since the range of the latter is limited to a very narrow area underneath the surface, while multiple damage mechanisms can generally be found in several plies of the laminate. The solution presented invokes two levels of analysis. Firstly, on the laminate level, applied membrane …