Open Access. Powered by Scholars. Published by Universities.®

Structural Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Structural Materials

Boron Nitride Nanotube Based Lightweight Metal Matrix Composites: Microstructure Engineering And Stress-Transfer Mechanics, Pranjal Nautiyal Jun 2020

Boron Nitride Nanotube Based Lightweight Metal Matrix Composites: Microstructure Engineering And Stress-Transfer Mechanics, Pranjal Nautiyal

FIU Electronic Theses and Dissertations

Lightweight metals, such as Aluminum, Magnesium and Titanium, are receiving widespread attention for manufacturing agile structures. However, the mechanical strength of these metals and their alloys fall short of structural steels, curtailing their applicability in engineering applications where superior load-bearing ability is required. There is a need to effectively augment the deformation- and failure-resistance of these metals without compromising their density advantage.

This dissertation explores the mechanical reinforcement of the aforementioned lightweight metal matrices by utilizing Boron Nitride Nanotube (BNNT), a 1D nanomaterial with extraordinary mechanical properties. The nanotubes are found to resist thermo-oxidative transformations up to ~750°C, establishing their …


Mechanical Behavior Of Ternary Metallic Glasses And Their Composites, Xue Liang Nov 2019

Mechanical Behavior Of Ternary Metallic Glasses And Their Composites, Xue Liang

FIU Electronic Theses and Dissertations

The vast demands for advanced materials have been putting tremendous pressure on materials scientists and engineers to discover and produce novel lighter and stiffer materials. This dissertation is devoted to the development and fundamental understanding of the strength and the structures within Aluminum ternary metallic glasses (MGs) and their composites, which have a low density and promising high strength. The dissertation focuses on the following content: The multi-objective optimization algorithm predicted the Al16.5Ni8Ce75.5 ternary metallic glass composition with an improved glass-forming ability (supercooled liquid region ∆����=29K), based on the provided dataset. Inoue Criteria can predict …


Graphene Foam Reinforced Shape Memory Polymer Epoxy Composites, Adeyinka Idowu Oct 2019

Graphene Foam Reinforced Shape Memory Polymer Epoxy Composites, Adeyinka Idowu

FIU Electronic Theses and Dissertations

Shape memory polymer (SMP) epoxy has received growing interest due to its facile processing, low density, and high recoverable strain. Despite these positive attributes, SMP epoxy has drawbacks such as slow recovery rate, and inferior mechanical properties. The slow recovery rate restricts the use of SMP epoxy as a functional structure.

The aim of the present work is to explore the capabilities of three-dimensional (3D) graphene foam (GrF) and graphene nanoplatelet (GNP) as reinforcements in SMP epoxy to overcome their slow recovery and improve the mechanical properties. GrF and GNP based SMP epoxy composites are fabricated by mold-casting approach and …


Spark Plasma Sintering Of 2d Nitride And Carbide Based Ceramics, Archana Loganathan Jun 2019

Spark Plasma Sintering Of 2d Nitride And Carbide Based Ceramics, Archana Loganathan

FIU Electronic Theses and Dissertations

Two-dimensional (2D) nanomaterials have stimulated significant interest among materials community due to a wide variety of application ranging from functional to structural properties. Boron nitride nanosheets (BNNS), boron-carbon-nitride (BCN), and MXene (Mn+1Xn, transition metal carbides, nitrides or carbonitrides) belongs to 2D materials family with van der Waals bonding between the layers. The research on synthesis and properties of BNNS, BCN and MXene have been predominantly explored for single- or multi-layered 2D nanosheets. In this study, the focus is to synthesize bulk layered BNNS and BCN using single or multilayered 2D nanomaterials by spark plasma sintering (SPS). …


Thermodynamic Evaluation And Modeling Of Grade 91 Alloy And Its Secondary Phases Through Calphad Approach, Andrew Logan Smith Mr. May 2018

Thermodynamic Evaluation And Modeling Of Grade 91 Alloy And Its Secondary Phases Through Calphad Approach, Andrew Logan Smith Mr.

FIU Electronic Theses and Dissertations

Grade 91 (Gr.91) is a common structural material used in boiler applications and is favored due to its high temperature creep strength and oxidation resistance. Under cyclic stresses, the material will experience creep deformation eventually causing the propagation of type IV cracks within its heat-affected-zone (HAZ) which can be a major problem under short-term and long-term applications. In this study, we aim to improve this premature failure by performing a computational thermodynamic study through the Calculation of Phase Diagram (CALPHAD) approach. Under this approach, we have provided a baseline study as well as simulations based on additional alloying elements such …


Thermodynamic Investigation Of Yttria-Stabilized Zirconia (Ysz) System, Mohammad Asadikiya Nov 2017

Thermodynamic Investigation Of Yttria-Stabilized Zirconia (Ysz) System, Mohammad Asadikiya

FIU Electronic Theses and Dissertations

The yttria-stabilized zirconia (YSZ) system has been extensively studied because of its critical applications, like solid oxide fuel cells (SOFCs), oxygen sensors, and jet engines. However, there are still important questions that need to be answered and significant thermodynamic information that needs to be provided for this system. There is no predictive tool for the ionic conductivity of the cubic-YSZ (c-YSZ), as an electrolyte in SOFCs. In addition, no quantitative diagram is available regarding the oxygen ion mobility in c-YSZ, which is highly effective on its ionic conductivity. Moreover, there is no applicable phase stability diagram for the nano-YSZ, which …


Three-Dimensional Graphene Foam Reinforced Epoxy Composites, Leslie Embrey Mar 2017

Three-Dimensional Graphene Foam Reinforced Epoxy Composites, Leslie Embrey

FIU Electronic Theses and Dissertations

Three-dimensional graphene foam (3D GrF) is an interconnected, porous structure of graphene sheets with excellent mechanical, electrical and thermal properties, making it a candidate reinforcement for polymer matrices. GrF’s 3D structure eliminates nanoparticle agglomeration and provides seamless pathways for electron travel. The objective of this work is to fabricate low density GrF reinforced epoxy composites with superior mechanical and electrical properties and study the underlying deformation mechanisms. Dip coating and mold casting fabrication methods are employed in order to tailor the microstructure and properties. The composite’s microstructure revealed good interfacial interaction. By adding mere 0.63 wt.% GrF, flexural strength was …


Creation And Evaluation Of Polymer/Multiwall Carbon Nanotube Films For Structural Vibration Control And Strain Sensing Properties, Weiwei Lin Nov 2016

Creation And Evaluation Of Polymer/Multiwall Carbon Nanotube Films For Structural Vibration Control And Strain Sensing Properties, Weiwei Lin

FIU Electronic Theses and Dissertations

Multifunctional materials both with damping properties and strain sensing properties are very important. They promise to be more weight-efficient, and provide volume-efficient performance, flexibility and potentially, less maintenance than traditional multi-component brass-board systems.

The goal of this dissertation work was to design, synthesize, investigate and apply polyaniline/Multiwall carbon nanotube (PANI/MWCNT) and polyurethane (PU) /MWCNT composites films for structural vibration control and strain sensors using free layer damping methods and static and dynamic strain sensing test methods.

The PANI/MWCNT was made by in situ polymerization of PANI in the presence of MWCNT, then frit compression was used to make circular and …


High Temperature Oxidation Study Of Tantalum Carbide-Hafnium Carbide Solid Solutions Synthesized By Spark Plasma Sintering, Cheng Zhang Oct 2016

High Temperature Oxidation Study Of Tantalum Carbide-Hafnium Carbide Solid Solutions Synthesized By Spark Plasma Sintering, Cheng Zhang

FIU Electronic Theses and Dissertations

Tantalum carbide (TaC) and hafnium carbide (HfC) possess extremely high melting points, around 3900 oC, which are the highest among the known materials. TaC and HfC exhibit superior oxidation resistance under oxygen deficient and rich environments, respectively. A versatile material can be expected by forming solid solutions of TaC and HfC. However, the synthesis of fully dense solid solution carbide is a challenge due to their intrinsic covalent bonding which makes sintering challenging.

The aim of the present work is to synthesize full dense TaC-HfC solid solutions by spark plasma sintering with five compositions: pure HfC, HfC-20 vol.% TaC …