Open Access. Powered by Scholars. Published by Universities.®

Structural Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Structural Materials

Failure Simulations At Multiple Length Scales In High Temperature Structural Alloys, Chao Pu Dec 2015

Failure Simulations At Multiple Length Scales In High Temperature Structural Alloys, Chao Pu

Doctoral Dissertations

A number of computational methodologies have been developed to investigate the deformation and damage mechanism of various structural materials at different length scale and under extreme loading conditions, and also to provide insights in the development of high-performance materials.

In microscopic material behavior and failure modes, polycrystalline metals of interest include heterogeneous deformation field due to crystalline anisotropy, inter/intra grain or phase and grain boundary interactions. Crystal plasticity model is utilized to simulate microstructure based polycrystalline materials, and micro-deformation information, such as lattice strain evolution, can be captured based on crystal plasticity finite element modeling (CPFEM) in ABAQUS. The comparison …


Ion Irradiation-Induced Microstructural Change In Sic, Chien-Hung Chen Dec 2015

Ion Irradiation-Induced Microstructural Change In Sic, Chien-Hung Chen

Doctoral Dissertations

The high temperature radiation resistance of nuclear materials has become a key issue in developing future nuclear reactors. Because of its mechanical stability under high-energy neutron irradiation and high temperature, silicon carbide (SiC) has great potential as a structural material in advanced nuclear energy systems.

A newly developed nano-engineered (NE) 3C SiC with a nano-layered stacking fault (SFs) structure has been recently considered as a prospective choice due to enhanced point defect annihilation between layer-type structures, leading to outstanding radiation durability.

The objective of this project was to advance the understanding of gas bubble formation mechanisms under irradiation conditions in …


Morphology Evolution Mechanisms Of Low Band Gap Polymer-Based Photovoltaics, Sunzida Ferdous Nov 2015

Morphology Evolution Mechanisms Of Low Band Gap Polymer-Based Photovoltaics, Sunzida Ferdous

Doctoral Dissertations

An optimal nanoscale phase separation between the donor (generally, a conjugated polymer) and the acceptor (generally, a fullerene derivative) materials is one of the major requirements for obtaining high efficiency organic photovoltaic (OPV) device. Recent methods of controlling such nanostructure morphology in a bulkheterojunction (BHJ) OPV device involve addition of a small amount of solvent additive to the donor and acceptor solutions. The idea is to retain the acceptor materials into the solution for a longer period of time during the film solidification process, thus allowing the donor material to crystallize earlier. The ultimate morphology resulting from the solvent casting …


Structural Aspects Of Deformation In Bulk Metallic Glasses, Yang Tong May 2015

Structural Aspects Of Deformation In Bulk Metallic Glasses, Yang Tong

Doctoral Dissertations

Metallic glasses have liquid-like structure without well-defined topological defects like dislocations in metals and alloys. The unique disordered structure of metallic glasses leads to unique mechanical properties, such as inhomogeneous deformation at low temperature and homogeneous deformation at high temperature, and brittle behavior induced by annealing. This dissertation address three critical issues related to the mechanical behavior of metallic glasses:

  1. Identification of deformation defects in metallic glasses. We have conducted high energy X-ray diffraction experiment — using anisotropic pair distribution function — to characterize the size and density of defects in metallic glasses activated by external stresses. Our results based …


Microstructures And Mechanical Behavior Of Nial-Strengthened Ferritic Alloys At Room And Elevated Temperatures, Zhiqian Sun May 2015

Microstructures And Mechanical Behavior Of Nial-Strengthened Ferritic Alloys At Room And Elevated Temperatures, Zhiqian Sun

Doctoral Dissertations

In order to improve the thermal efficiency and decrease the greenhouse gases emission, it is required to increase the steam temperature and pressure in fossil-energy power plants. In the United States, research has been performing in order to push steam temperature to 760 Celsius degree and steam pressure to 35 MPa. However, the highest operational temperature for current commercial heat-resistant ferritic steels is ~ 620 Celsius degree. In this sense, new advanced ferritic alloys with better creep resistance are needed, considering such service conditions in next-generation ultra-supercritical fossil-energy power plants.

Coherent B2-ordered NiAl-type precipitates have been employed to reinforce the …


Molecular Dynamics Simulation Of Irradiation Damage In Multicomponent Alloys, Wei Guo May 2015

Molecular Dynamics Simulation Of Irradiation Damage In Multicomponent Alloys, Wei Guo

Doctoral Dissertations

The development of the generation IV reactors calls for radiation resistant materials. This thesis proposes that the newly developed single phase solid solution of high-entropy alloys (HEAs) can be such candidates. HEAs can undergo the crystalline to amorphous to crystalline (C-A-C) transitions under radiation. The radiation induced amorphous structure is a highly radiation resistant medium as shown by previous studies, and it further transforms to crystalline phases without much structural defects. In this thesis, by reviewing the formation rules of solid solutions and amorphous metallic glasses, it is suggested that the atomic size plays a key role affecting the C-A-C …


Energy Selective Neutron Imaging For The Characterization Of Polycrystalline Materials, Robin Woracek May 2015

Energy Selective Neutron Imaging For The Characterization Of Polycrystalline Materials, Robin Woracek

Doctoral Dissertations

This multipart dissertation focuses on the development and evaluation of advanced methods for material testing and characterization using neutron diffraction and imaging techniques. A major focus is on exploiting diffraction contrast in energy selective neutron imaging (often referred to as Bragg edge imaging) for strain and phase mapping of crystalline materials. The dissertation also evaluates the use of neutron diffraction to study the effect of multi-axial loading, in particular the role of applying directly shear strains from the application of torsion. A portable tension-torsion-tomography loading system has been developed for in-situ measurements and integrated at major user facilities around the …