Open Access. Powered by Scholars. Published by Universities.®

Semiconductor and Optical Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Semiconductor and Optical Materials

Encapsulated 2d Materials And The Potential For 1d Electrical Contacts, Sarah Wittenburg May 2024

Encapsulated 2d Materials And The Potential For 1d Electrical Contacts, Sarah Wittenburg

Physics Undergraduate Honors Theses

The utilization of two-dimensional materials and heterostructures, particularly graphene and hexagonal boron nitride, have garnered significant attention in the realm of nanoelectronics due to their unique properties and versatile functionalities. This study focuses on the synthesis and fabrication processes of monolayer graphene encapsulated between layers of hBN, aiming to explore the potential of these heterostructures for various electronic applications. The encapsulation of graphene within hBN layers not only enhances device performance but also shields graphene from environmental contaminants, ensuring long-term stability. Experimental techniques, including mechanical exfoliation and stamp-assisted transfer, are employed to construct three-layer stacks comprising hBN-graphene-hBN. The fabrication process …


Combinatorial Cuni Alloy Thin Film Catalysts For Layer Number Regulation In Cvd Grown Graphene, Sumeer Khanna May 2022

Combinatorial Cuni Alloy Thin Film Catalysts For Layer Number Regulation In Cvd Grown Graphene, Sumeer Khanna

Masters Theses

In this work, synthesis of combinatorial library of CuxNi1-x (copper nickel) alloy thin films via co-sputtering from Cu (copper) and Ni (nickel) targets as catalysts for chemical vapor deposition (CVD) growth of graphene is reported. The gradient alloy morphology, composition and microstructure were characterized via scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS), and x-ray diffraction (XRD), respectively. Subsequently, the CuxNi1-x alloy thin films were used to grow graphene in a CH4-Ar-H2 (methane-argon-hydrogen) ambient in thermal CVD tube furnace. The underlying rationale is to adjust the CuxNi1-x …


Electro-Thermal Transport In Two-Dimensional Materials And Their Heterostructures, Arnab K. Majee Jun 2021

Electro-Thermal Transport In Two-Dimensional Materials And Their Heterostructures, Arnab K. Majee

Doctoral Dissertations

”Smaller is better” is the mantra that has driven semiconductor industry for the past 50 years. The on-going quest for faster electronic switching, higher transistor density, and better device performance, has been driven by a self-fulfilling prophecy popularly known as Moore’s law, according to which the number of transistors per unit area of a chip doubles itself approximately every two years. A modern smartphone has about 8 billion transistors, which is as large as current earth’s population. Although each transistor dissipates negligible power, but the collective power dissipation from all the transistors in an electronic gadget and inefficient heat removing …


Development Of A Laser-Assisted Chemical Vapor Deposition (Cvd) Technique To Grow Carbon-Based Materials, Abiodun Ademola Odusanya May 2021

Development Of A Laser-Assisted Chemical Vapor Deposition (Cvd) Technique To Grow Carbon-Based Materials, Abiodun Ademola Odusanya

MSU Graduate Theses

Carbon-based materials (CBMs) including graphene, carbon nanotubes (CNT), highly ordered pyrolytic graphite (HOPG), and pyrolytic carbon (PyC) have gained so much attention in research in recent years because of their unique electronic, optical, thermal, and mechanical properties. CBMs are relatively very stable and have minimal environmental footprint. Various techniques such as mechanical exfoliation, pulsed laser deposition, and chemical vapor deposition (CVD) have been used to grow CBMs and among them thermal CVD is the most common. This study aims to explore ways of reducing the energy requirement to produce CBMs, and for that, a novel pulsed laser-assisted CVD technique had …


Universal Image Segmentation For Optical Identification Of 2d Materials, Joshua Island, Randy M. Sterbentz, Kristine L. Haley Mar 2021

Universal Image Segmentation For Optical Identification Of 2d Materials, Joshua Island, Randy M. Sterbentz, Kristine L. Haley

Physics & Astronomy Faculty Research

Machine learning methods are changing the way data is analyzed. One of the most powerful and widespread applications of these techniques is in image segmentation wherein disparate objects of a digital image are partitioned and classified. Here we present an image segmentation program incorporating a series of unsupervised clustering algorithms for the automatic thickness identification of two-dimensional materials from digital optical microscopy images. The program identifies mono- and few-layer flakes of a variety of materials on both opaque and transparent substrates with a pixel accuracy of roughly 95%. Contrasting with previous attempts, application generality is achieved through preservation and analysis …


Infrared Energy Conversion In Plasmonic Fields At Two-Dimensional Semiconductors, Gregory Thomas Forcherio May 2017

Infrared Energy Conversion In Plasmonic Fields At Two-Dimensional Semiconductors, Gregory Thomas Forcherio

Graduate Theses and Dissertations

Conversion of infrared energy within plasmonic fields at two-dimensional, semiconductive transition metal dichalcogenides (TMD) through plasmonic hot electron transport and nonlinear frequency mixing has important implications in next-generation optoelectronics. Drude-Lorentz theory and approximate discrete dipole (DDA) solutions to Maxwell’s equations guided metal nanoantenna design towards strong infrared localized surface plasmon resonance (LSPR). Excitation and damping dynamics of LSPR in heterostructures of noble metal nanoantennas and molybdenum- or tungsten-disulfide (MoS2; WS2) monolayers were examined by parallel synthesis of (i) DDA electrodynamic simulations and (ii) near-field electron energy loss (EELS) and far-field optical transmission UV-vis spectroscopic measurements. Susceptibility to second-order nonlinear frequency …


Plasmon-Mediated Energy Conversion In Metal Nanoparticle-Doped Hybrid Nanomaterials, Jeremy Dunklin Jan 2017

Plasmon-Mediated Energy Conversion In Metal Nanoparticle-Doped Hybrid Nanomaterials, Jeremy Dunklin

Graduate Theses and Dissertations

Climate change and population growth demand long-term solutions for clean water and energy. Plasmon-active nanomaterials offer a promising route towards improved energetics for efficient chemical separation and light harvesting schemes. Two material platforms featuring highly absorptive plasmonic gold nanoparticles (AuNPs) are advanced herein to maximize photon conversion into thermal or electronic energy. Optical extinction, attributable to diffraction-induced internal reflection, was enhanced up to 1.5-fold in three-dimensional polymer films containing AuNPs at interparticle separations approaching the resonant wavelength. Comprehensive methods developed to characterize heat dissipation following plasmonic absorption was extended beyond conventional optical and heat transfer descriptions, where good agreement was …


Electronic And Magnetic Excitations In Graphene And Magnetic Nano-Ribbons, Maher Zakaria Ahmed Selim Sep 2011

Electronic And Magnetic Excitations In Graphene And Magnetic Nano-Ribbons, Maher Zakaria Ahmed Selim

Electronic Thesis and Dissertation Repository

The discovery of graphene - a 2D material with superior physical properties - in 2004 was important for the intensive global research to find alternatives to three-dimensional (3D) semiconductor materials in industry. At the same time there have been exciting advances for 2D magnetic materials on the nanometer scale. The superior properties of graphene are mainly attributed to its crystal structure and its relatively short-range interactions. These properties show that natural and artificial 2D materials are promising for new applications.

In this thesis we have carried out a comprehensive investigation of the effects of the 2D lattice structures, the roles …