Open Access. Powered by Scholars. Published by Universities.®

Semiconductor and Optical Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Semiconductor and Optical Materials

Combinatorial Study Of Ni-Ti-Pt Ternary Metal Gate Electrodes On Hfo2 For The Advanced Gate Stack, K.-S. Chang, M. L. Green, J. Suehle, E. M. Vogel, H. Xiong, Jason R. Hattrick-Simpers, I. Takeuchi, O. Famodu, K. Ohmori, P. Ahmet, T. Chikyow, P. Majhi, B.-H. Lee, M. Gardner Jan 2006

Combinatorial Study Of Ni-Ti-Pt Ternary Metal Gate Electrodes On Hfo2 For The Advanced Gate Stack, K.-S. Chang, M. L. Green, J. Suehle, E. M. Vogel, H. Xiong, Jason R. Hattrick-Simpers, I. Takeuchi, O. Famodu, K. Ohmori, P. Ahmet, T. Chikyow, P. Majhi, B.-H. Lee, M. Gardner

Faculty Publications

The authors have fabricated combinatorial Ni–Ti–Pt ternary metal gate thin film libraries on HfO2 using magnetron co-sputtering to investigate flatband voltage shift (ΔVfb) , work function (Φm) , and leakage current density (JL) variations. A more negative ΔVfb is observed close to the Ti-rich corner than at the Ni- and Pt-rich corners, implying smaller Φm near the Ti-rich corners and higher Φm near the Ni- and Pt-rich corners. In addition, measured JL values can be explained consistently with the observed Φm variations. Combinatorial methodologies prove to be useful …


Melting And Solidification Study Of As-Deposited And Recrystallized Bi Thin Films, M. K. Zayed, H. E. Elsayed-Ali Jan 2006

Melting And Solidification Study Of As-Deposited And Recrystallized Bi Thin Films, M. K. Zayed, H. E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

Melting and solidification of as-deposited and recrystallized Bi crystallites, deposited on highly oriented 002-graphite at 423 K, were studied using reflection high-energy electron diffraction (RHEED). Films with mean thickness between 1.5 and 33 ML (monolayers) were studied. Ex situ atomic force microscopy was used to study the morphology and the size distribution of the formed nanocrystals. The as-deposited films grew in the form of three-dimensional crystallites with different shapes and sizes, while those recrystallized from the melt were formed in nearly similar shapes but different sizes. The change in the RHEED pattern with temperature was used to probe the melting …


Growth Of Ge Quantum Dots On Si(100)-(2×1) By Pulsed Laser Deposition, M. S. Hegazy, H. E. Elsayed-Ali Jan 2006

Growth Of Ge Quantum Dots On Si(100)-(2×1) By Pulsed Laser Deposition, M. S. Hegazy, H. E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

Self-assembled germanium quantum dots (QDs) were grown on Si(100)-(2×1) by pulsed laser deposition. In situ reflection-high energy electron diffraction (RHEED) and postdeposition atomic force microscopy are used to study the growth of the QDs. Several films of different thicknesses were grown at a substrate temperature of 400 °C using a Q-switched Nd:yttrium aluminum garnet laser (λ= 1064 nm, 40 ns pulse width, 23 J/cm 2 fluence, and 10 Hz repetition rate). At low film thicknesses, hut clusters that are faceted by different planes, depending on their height, are observed after the completion of the wetting layer. With increasing film thickness, …