Open Access. Powered by Scholars. Published by Universities.®

Semiconductor and Optical Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Semiconductor and Optical Materials

Investigation Of Gaas Double Heterostructures For Photonic Heat Engines, Nathan Giannini-Hutchin Dec 2022

Investigation Of Gaas Double Heterostructures For Photonic Heat Engines, Nathan Giannini-Hutchin

Optical Science and Engineering ETDs

The creation of a laser cooled semiconductor device has been a long sought achievement. GaAs-based devices have emerged as a promising candidate for the realization of this goal. Efforts to improve the efficiency of such devices have enabled the material to exhibit external quantum efficiencies (EQE, a measure of the probability that an excitation leads to the emission of a photon) of 99.5\%. Despite this impressive feat, a laser coolable device remains elusive.

To investigate the obstacles to such a device, the material characteristics of GaAs-based double heterostructures (DHS) are theoretically and experimentally examined. Through this study, a GaAs $\vert$ …


Interferometric Lithography- An Approach To Large Area And Cost Effective Nanopatterning, Vineeth Sasidharan Nov 2021

Interferometric Lithography- An Approach To Large Area And Cost Effective Nanopatterning, Vineeth Sasidharan

Optical Science and Engineering ETDs

In this dissertation interferometric lithography is approached in two different ways to address two important constraints of nanopatterning. One approach solves the problem of scaling up interferometric lithography to wafer scale (4 inch or larger) area. Through the second approach we have developed a nanopatterning technique based on interferometric lithography by using an inexpensive (~$100) diode laser as source, making interferometric lithography a very cost-effective technique.

Wafer-scale large-area nanopatterning was developed using an amplitude grating mask as a grating beam splitter along with spatial averaging of laser intensity by wobbling. The longitudinal and transverse coherence issues both are eased by …


Mid-Ir Optical Refrigeration And Radiation Balanced Lasers, Saeid Rostami Apr 2020

Mid-Ir Optical Refrigeration And Radiation Balanced Lasers, Saeid Rostami

Optical Science and Engineering ETDs

This dissertation reports recent advances in mid-infrared (mid-IR) optical refrigeration and Radiation Balanced Lasers (RBLs). The first demonstration of optical refrigeration in Ho:YLF and Tm:YLF crystals as promising mid-IR laser cooling candidates is reported. Room temperature laser cooling efficiency of Tm- and Ho-doped crystals at different excitation polarization is measured and their external quantum efficiency and background absorption are extracted. Complete characterization of laser cooling samples is obtained via performing detailed low-temperature spectroscopic analysis, and their minimum achievable temperature as well as conditions to achieve laser cooling efficiency enhancement in mid-IR are investigated. By developing a Thulium-doped fiber amplifier, seeded …