Open Access. Powered by Scholars. Published by Universities.®

Other Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Other Materials Science and Engineering

Detection Of Nucleotides In Hydrated Ssdna Via 2-D H-Bn Nanopore With Ionic-Liquid/Salt-Water Interface, Jungsoo Lee Dec 2020

Detection Of Nucleotides In Hydrated Ssdna Via 2-D H-Bn Nanopore With Ionic-Liquid/Salt-Water Interface, Jungsoo Lee

Multidisciplinary Studies Theses and Dissertations

Accomplishing slow translocation speed with high sensitivity has been the greatest mission for solid-state nanopore (SSN) to electrically detect nucleobases in single-stranded DNA (ssDNA). In this study, a method to detect nucleobases in ssDNA using a SSN is introduced by considerably slowing down the translocation speed and effectively increasing its sensitivity. The ultra-thin titanium dioxide (TiO2) coated hexagonal boron nitride (h-BN) nanopore was fabricated, along with an ionic-liquid [bmim][PF6]/2.0 M KCl aqueous (cis/trans) interfacial system, to increase both the spatial and the temporal resolutions. As the ssDNA molecules entered the nanopore, a …


Data Analysis In Combinatorial Experiments: Applying Supervised Principal Component Technique To Investigate The Relationship Between Tof-Sims Spectra And The Composition Distribution Of Ternary Metallic Alloy Thin Films, Rossana Dell'anna, Palo Lazzeri, Roberto Canteri, Christian Long, Jason Hattrick-Simpers, Ichiro Takeuchi, Mariano Anderle Mar 2015

Data Analysis In Combinatorial Experiments: Applying Supervised Principal Component Technique To Investigate The Relationship Between Tof-Sims Spectra And The Composition Distribution Of Ternary Metallic Alloy Thin Films, Rossana Dell'anna, Palo Lazzeri, Roberto Canteri, Christian Long, Jason Hattrick-Simpers, Ichiro Takeuchi, Mariano Anderle

Jason R. Hattrick-Simpers

No abstract provided.


Applications Of High Throughput (Combinatorial) Methodologies To Electronic, Magnetic, Optical, And Energy-Related Materials, Martin L. Green, Ichiro Takeuchi, Jason R. Hattrick-Simpers Mar 2015

Applications Of High Throughput (Combinatorial) Methodologies To Electronic, Magnetic, Optical, And Energy-Related Materials, Martin L. Green, Ichiro Takeuchi, Jason R. Hattrick-Simpers

Jason R. Hattrick-Simpers

High throughput (combinatorial) materials science methodology is a relatively new research paradigm that offers the promise of rapid and efficient materials screening, optimization, and discovery. The paradigm started in the pharmaceutical industry but was rapidly adopted to accelerate materials research in a wide variety of areas. High throughput experiments are characterized by synthesis of a “library” sample that contains the materials variation of interest (typically composition), and rapid and localized measurement schemes that result in massive data sets. Because the data are collected at the same time on the same “library” sample, they can be highly uniform with respect to …


Phase Transformation In An Yttrium-Hydrogen System Studied By Tem, K. Wang, Jason Hattrick-Simpers, L. Bendersky Mar 2015

Phase Transformation In An Yttrium-Hydrogen System Studied By Tem, K. Wang, Jason Hattrick-Simpers, L. Bendersky

Jason R. Hattrick-Simpers

No abstract provided.


Phase Formation And Hydrogen Ordering In Yttrium-Hydrogen System, Ke Wang, Jason Hattrick-Simpers, Leonid Bendersky Mar 2015

Phase Formation And Hydrogen Ordering In Yttrium-Hydrogen System, Ke Wang, Jason Hattrick-Simpers, Leonid Bendersky

Jason R. Hattrick-Simpers

No abstract provided.


The Materials Super Highway: Integrating High-Throughput Experimentation Into Mapping The Catalysis Materials Genome, Jason Hattrick-Simpers, Cun Wen, Jochen Lauterbach Mar 2015

The Materials Super Highway: Integrating High-Throughput Experimentation Into Mapping The Catalysis Materials Genome, Jason Hattrick-Simpers, Cun Wen, Jochen Lauterbach

Jason R. Hattrick-Simpers

No abstract provided.


Combinatorial Approach To Turbine Bond Coat Discovery, Christopher Metting, Johnathan Bunn, Ellen Underwood, Stephen Smoak, Jason Hattrick-Simpers Mar 2015

Combinatorial Approach To Turbine Bond Coat Discovery, Christopher Metting, Johnathan Bunn, Ellen Underwood, Stephen Smoak, Jason Hattrick-Simpers

Jason R. Hattrick-Simpers

No abstract provided.


Giant Magnetostriction In Annealed Co1-XFeX Thin-Films, Dwight Hunter, Will Osborn, Ke Wang, Nataliya Kazantseva, Jason R. Hattrick-Simpers, Richard Suchoski, Ryota Takahashi, Marcus L. Young, Apurva Mehta, Leonid A. Bendersky, Same E. Lofland, Manfred Wuttig, Ichiro Takeuchi Mar 2015

Giant Magnetostriction In Annealed Co1-XFeX Thin-Films, Dwight Hunter, Will Osborn, Ke Wang, Nataliya Kazantseva, Jason R. Hattrick-Simpers, Richard Suchoski, Ryota Takahashi, Marcus L. Young, Apurva Mehta, Leonid A. Bendersky, Same E. Lofland, Manfred Wuttig, Ichiro Takeuchi

Jason R. Hattrick-Simpers

Chemical and structural heterogeneity and the resulting interaction of coexisting phases can lead to extraordinary behaviours in oxides, as observed in piezoelectric materials at morphotropic phase boundaries and relaxor ferroelectrics. However, such phenomena are rare in metallic alloys. Here we show that, by tuning the presence of structural heterogeneity in textured Co1−xFex thin films, effective magnetostriction λeff as large as 260 p.p.m. can be achieved at low-saturation field of ~10 mT. Assuming λ100 is the dominant component, this number translates to an upper limit of magnetostriction ofλ100≈5λeff >1,000 p.p.m. Microstructural analyses …


Enhanced Dielectric Properties In Single Crystal-Like Bifeo3 Thin Films Grown By Flux-Mediated Epitaxy, S.-H. Lim, M. Murakami, J. Yang, S.-Y. Young, Jason Hattrick-Simpers, M. Wuttig, L. Salamanca-Riba, I. Takeuchi Mar 2015

Enhanced Dielectric Properties In Single Crystal-Like Bifeo3 Thin Films Grown By Flux-Mediated Epitaxy, S.-H. Lim, M. Murakami, J. Yang, S.-Y. Young, Jason Hattrick-Simpers, M. Wuttig, L. Salamanca-Riba, I. Takeuchi

Jason R. Hattrick-Simpers

We have fabricated single crystal-like BiFeO3 (BFO) thin films by flux-mediated epitaxy using pulsed laser deposition(PLD). The Bi–Cu–O flux composition and its thickness were optimized using composition spread, thickness gradient, and temperature gradient libraries. The optimized BFO thin films grown with this technique showed larger grain size of ∼2μm and higher dielectric constant in the range of 260–340 than those for standard PLD grown films. In addition, the leakage current density of the films was reduced by two orders of magnitude compared to that of standard PLD grown films.


Synthesis Of Mono-Disperse Cofe Alloy Nanoparticles With High Activity Toward Nabh4 Hydrolysis, Cun Wen, Xin Zhang, Samuel Lofland, Jochen Lauterbach, Jason Hattrick-Simpers Mar 2015

Synthesis Of Mono-Disperse Cofe Alloy Nanoparticles With High Activity Toward Nabh4 Hydrolysis, Cun Wen, Xin Zhang, Samuel Lofland, Jochen Lauterbach, Jason Hattrick-Simpers

Jason R. Hattrick-Simpers

No abstract provided.


Exploration Of Artificial Multiferroic Thin-Film Heterostructures Using Composition Spreads, K.-S. Chang, M. A. Aronova, C.-L. Lin, M. Murakami, M.-H. Yu, Jason R. Hattrick-Simpers, O. O. Famodu, S. Y. Lee, R. Ramesh, M. Wuttig, I. Takeuchi, C. Gao, L. A. Bendersky Mar 2015

Exploration Of Artificial Multiferroic Thin-Film Heterostructures Using Composition Spreads, K.-S. Chang, M. A. Aronova, C.-L. Lin, M. Murakami, M.-H. Yu, Jason R. Hattrick-Simpers, O. O. Famodu, S. Y. Lee, R. Ramesh, M. Wuttig, I. Takeuchi, C. Gao, L. A. Bendersky

Jason R. Hattrick-Simpers

We have fabricated a series of composition spreads consisting of ferroelectric BaTiO3 and piezomagnetic CoFe2O4 layers of varying thicknesses modulated at nanometer level in order to explore artificial magnetoelectricthin-film heterostructures. Scanning microwavemicroscopy and scanning superconducting quantum interference device microscopy were used to map the dielectric and magnetic properties as a function of continuously changing average composition across the spreads, respectively. Compositions in the middle of the spreads were found to exhibit ferromagnetism while displaying a dielectric constant as high as ≈120.