Open Access. Powered by Scholars. Published by Universities.®

Other Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electronic Theses and Dissertations

Discipline
Institution
Keyword
Publication Year

Articles 1 - 28 of 28

Full-Text Articles in Other Materials Science and Engineering

The Interplay Of Spin, Charge, And Heat: From Metal/Insulator Heterostructures To Perovskite Bilayers, Sam M. Bleser Mar 2024

The Interplay Of Spin, Charge, And Heat: From Metal/Insulator Heterostructures To Perovskite Bilayers, Sam M. Bleser

Electronic Theses and Dissertations

In this dissertation begin with an investigation of non-local spin transport in an amorphous germanium (a-Ge) sample via the inverse spin Hall effect (ISHE). In that study we show that commonly used techniques such as differential conductance and delta mode of a paired Keithley 6221/2182a for non-local resistance measurements can lead to false indicators of spin transport. Next, we turn out attention to a thickness dependent study in thermally-evaporated chromium (Cr) thin films on a bulk polycrystalline yttrium-iron-garnet (YIG) substrate. This project analyzed the spin transport in the Cr films versus thickness via the longitudinal spin Seebeck effect (LSSE). This …


Finite Element Analysis Of Thermal-Mechanical Instabilities In Nonmetallic Friction Composite Material, Joseph-Shaahu Shaahu Mar 2024

Finite Element Analysis Of Thermal-Mechanical Instabilities In Nonmetallic Friction Composite Material, Joseph-Shaahu Shaahu

Electronic Theses and Dissertations

Thermal-mechanical instability (TMI) has been a research topic of interest as it focuses a lot on transportation systems. Thermal-mechanical instability was first noticed in railway and experimentally studied with a pin-to-pin or pin-to-surface setup of sliding contact. The topic has been extended into brakes and clutches which are two of the most common sliding systems most susceptible to thermal buckling and thermoelastic instability (TEI), where thermal buckling and thermoelastic instability are two sub-categories of thermal-mechanical instability. Thermal-mechanical instability is an ongoing research to better understand the phenomenon and the limits at which such instability occurs. This work delved into the …


Thermo-Mechanical Instabilities In Next-Generation Friction Materials In High-Speed Sliding Systems, Kingsford Koranteng Nov 2023

Thermo-Mechanical Instabilities In Next-Generation Friction Materials In High-Speed Sliding Systems, Kingsford Koranteng

Electronic Theses and Dissertations

For centuries, the manufacturing industry has incorporated metals like copper into friction materials to enhance thermal properties and minimize thermo-mechanical instabilities (TMI) in high-speed sliding systems. Unfortunately, these metals have adverse environmental effects due to the emission of hazardous particulate matter. As a result, there is a growing movement towards adopting next-generation friction materials as an alternative solution.

The study begins by conducting experimental and numerical investigations to examine the instabilities found in metal-based friction materials. The primary objective is to utilize the insights gained from the investigations to computationally explore effective strategies for mitigating various instabilities that may arise …


Molecular Dynamics Study Of Characterization In Metal-Free Friction Materials, Yizhan Zhang Nov 2023

Molecular Dynamics Study Of Characterization In Metal-Free Friction Materials, Yizhan Zhang

Electronic Theses and Dissertations

Metallic friction materials currently used in industry may adversely impact the environment. Substitutions for metals in friction materials, on the other hand, can introduce operational safety issues and other unforeseeable issues such as thermal-mechanical instabilities and insufficient strength. In view of it, this dissertation focuses on developing different kinds of materials from simple structure to complex structure and evaluating the material properties with the assistance of molecular dynamics (MD) tools at the nano scale.

First, the concept of the contacted surfaces in friction at the atomic scale was introduced in order to get accurate understanding of the friction process compared …


The Modernization Of Large Power Transformer Tanks, Babajide O. Williams Jun 2023

The Modernization Of Large Power Transformer Tanks, Babajide O. Williams

Electronic Theses and Dissertations

Due to the current demands placed on the power grid in terms of climate change, increasing urbanization, and terrorist attacks, the U.S. government in response to these demands, mandated that all the grid components be modernized in order to increase their reliability. As a critical component of the grid, Large Power Transformers (LPTs) play a key role in ensuring sustainable power generation and distribution. A literature search performed in this work and the analysis of data retrieved from the search showed that the tanks of these LPTs are critical to their durability, longevity, and reliability. Therefore, the reliability of LPTs …


The Study Of Corrosion On Additive-Manufactured Metals., Braydan Daniels May 2023

The Study Of Corrosion On Additive-Manufactured Metals., Braydan Daniels

Electronic Theses and Dissertations

The purpose of this study was to investigate and compare the corrosion mechanisms between wrought and additive-manufactured (3D-printed) copper and stainless steel. The experimental procedure consisted of measuring the open circuit potential, electrochemical impedance spectroscopy, linear sweep voltammetry, Tafel analysis, surface topology, and scanning electron microscopy for each metal within salt water, tap water, sulfuric acid, and synthetic body fluid (excluding copper in synthetic body fluid).

Overall, printed stainless steel was more corrosion-resistant than wrought stainless steel in tap water and synthetic body fluid based on OCP, LSV, and surface topology results. Additionally, printed copper was more corrosion-resistant than wrought …


Design And Fabrication Of A High-Performance Heat Exchanger Using An Optimized Three-Dimensional Surface Structure Through Additive Manufacturing, Seth T. Waters Jan 2023

Design And Fabrication Of A High-Performance Heat Exchanger Using An Optimized Three-Dimensional Surface Structure Through Additive Manufacturing, Seth T. Waters

Electronic Theses and Dissertations

A heat exchanger is a device used to transfer thermal energy between two intertwining fluid pathways. In this study, the design of a novel heat exchanger is proposed using functional gradient double gyroid structure. The complex internal geometries of the gyroid structure significantly increases the surface area to volume ratio, and potentially could expressively improve efficiency of the heat transfer. The proposed idea provides a new approach for the design of a high-efficiency heat exchanger. In order to fabricate the complex structured heat exchanger system additive manufacturing is adapted instead of traditionally subtractive manufacturing techniques or casting. The prototypes of …


Wet Chemical Synthesis And Properties Of Argyrodite Sulfide Solid Electrolytes For Solid State Lithium Batteries., William Arnold Dec 2022

Wet Chemical Synthesis And Properties Of Argyrodite Sulfide Solid Electrolytes For Solid State Lithium Batteries., William Arnold

Electronic Theses and Dissertations

The commercialization of the lithium-ion battery (LIB) in 1991 was responsible for the explosion in portable electronic technologies that has been seen over the past 30 years. With the advent of electric vehicles and other high-powered technologies, there is tremendous demand for LIBs with higher energy density and high safety. To achieve this, new electrode materials must be explored. The obvious choice of anode material would be pure metal lithium, which has a theoretical specific capacity of 3860 mAh g-1 . Unfortunately, metal lithium anodes have not been widely commercialized due to their tendency to react violently with the …


Mixed Metal Oxide Nanowires Via Solid State Alloying., Veerendra Atla Aug 2021

Mixed Metal Oxide Nanowires Via Solid State Alloying., Veerendra Atla

Electronic Theses and Dissertations

Mixed metal oxide materials with composition control find applications in energy conversion and storage processes such as heterogenous catalysis, photoelectrochemical catalysis, electrocatalysis, thermal catalysis, and lithium-ion batteries. Mixed metal oxides and/or complex oxides with composition control and in one-dimensional form as nanowires could be interesting to various catalysis applications due to control on single crystal surfaces, active sites, acidity versus basicity site density, and oxygen vacancies. The major challenge is to synthesize mixed metal oxide nanowires beyond binary oxides with composition control. In this dissertation, solid state alloying of binary oxide nanowires with solid and liquid precursors is studied to …


Recycling Of Fiber Polymer Matrix Composites In Cementitious Materials, Edward Patton Clark Jan 2021

Recycling Of Fiber Polymer Matrix Composites In Cementitious Materials, Edward Patton Clark

Electronic Theses and Dissertations

Recycling options for fiber polymer matrix composite waste materials are limited because they typically cannot be reused, reprocessed for down-cycling, and are generally environmentally unfriendly. The utility industry, specifically electrical distribution, has been increasingly using hybrid carbon, glass fiber, and epoxy resin composite rods for high-voltage (HV) conductor transmission lines. The high-voltage conductor core (HVCC) used in the transmission line can have an optimal in-service-life of roughly several decades, in which the material is then retired to a waste landfill. Currently, there is limited research and recycling methodology for these hybrid composite rods. In this research, powder carbon fiber, glass …


Observation Of New Particle Formation In The Northern Hemisphere At Altitude From 4 To 20 Km, Mohamed Saad Jan 2021

Observation Of New Particle Formation In The Northern Hemisphere At Altitude From 4 To 20 Km, Mohamed Saad

Electronic Theses and Dissertations

New particle formation (NPF) is investigated using measurements of aerosol size distributions and meteorological variables made in two continents, including USA and Europe. Despite the considerably different aerosol particle abundances among the sites, a common relationship was found between the characteristics of NPF events and the air mass convective and/or advective transport. CO and O3 act as tracers of tropospheric and stratospheric air, respectively, their statistical relationship can be used to quantify air mass characteristics and origins. The mixing ratio values of CO increased within the upper troposphere layer before/during NPF events, which may serve as an indicator of occurring …


Monitoring Of Overhead Polymer Core Composite Conductors Under Excessive Mechanical Loads Using Fiber Bragg Grating Sensors, Daniel H. Waters Jan 2021

Monitoring Of Overhead Polymer Core Composite Conductors Under Excessive Mechanical Loads Using Fiber Bragg Grating Sensors, Daniel H. Waters

Electronic Theses and Dissertations

This combined experimental and numerical study addresses mechanical effects associated with static and dynamic loading of novel High Temperature Low Sag (HTLS) transmission line polymer core composite conductors. The developed methodology was successfully applied to ACCC® to explain the complex failure mechanisms associated with combined bending and tension loading. Furthermore, the use of Fiber Bragg Grating (FBG) sensors was investigated for the first time to monitor the ACCC® design during installation and in-service.

Transverse low-velocity impacts to the ACCC® conductor having either free or constrained end conditions and large axial tensile loads were performed. It was identified that the most …


The Development Of A Holistic Quality Score Using In-Situ Monitoring Of Laser Powder Bed Fusion, Ryan Daigneault Jan 2021

The Development Of A Holistic Quality Score Using In-Situ Monitoring Of Laser Powder Bed Fusion, Ryan Daigneault

Electronic Theses and Dissertations

Additive manufacturing processes allow for a great degree of flexibility in terms of part production. The process is autonomous once the part has started printing in that the operator generally does not need to intervene until the part is finished. One issue that this introduces, however, is an inability to determine part quality during the printing process. Once a part has started printing, the operator must either wait until the part is finished or regularly check on the part during the print to determine the part quality. Using data gathered from multiple sensors, a quality score can be used to …


Aqueous Redox Flow Batteries With Boron Doped Diamond As An Electrode., Alex M. Bates Aug 2020

Aqueous Redox Flow Batteries With Boron Doped Diamond As An Electrode., Alex M. Bates

Electronic Theses and Dissertations

As the interest and implementation of renewable energy accelerates, so does that of grid energy storage. It is widely believed that a cost-effective energy storage technology will bring about the proliferation of renewable energy. Redox flow battery (RFB) technology represents a promising solution to cost-effective grid energy storage. Compared to other technologies, RFBs have a long lifetime, high efficiency, are non-flammable, significantly reduce cost, and separately scale power and energy. The separation of power and energy enables increased energy capacity by simply adding electrolyte volume. Of the challenges facing RFB technology, one readily apparent is the cost of the active …


Thermally Driven Spin Transport In Ferromagnetic Metals, Wafa Saud Aljuaid Jan 2020

Thermally Driven Spin Transport In Ferromagnetic Metals, Wafa Saud Aljuaid

Electronic Theses and Dissertations

Since the discovery in 2008, the spin Seebeck effect has become one of the most active topics in the spin caloritronics research field. It opened a new way to create spin current by a combination of magnetic fields and heat. A temperature gradient in ferromagnetic (FM) metals generates a ow of spin current due to split of spin chemical potential between spin up and spin down electrons. This thermal spin current has been detected using an attached nonmagnetic heavy metal with large spin Hall angle via the inverse spin hall effect (ISHE). A voltage signal is generated since the nonmagnetic …


Influence Of Mechanical Properties Of Paper Coating On The Crack At The Fold Problem, Seyyed Mohammad Hashemi Najafi May 2019

Influence Of Mechanical Properties Of Paper Coating On The Crack At The Fold Problem, Seyyed Mohammad Hashemi Najafi

Electronic Theses and Dissertations

Paper coating layers are subject to various stresses and deformations in many converting processes such as calendering, printing, slitting, and folding of the paper. In some cases, products may crack during folding to generate a defect called cracking at the fold (CAF). The parameters that influence these defects are not well understood. The overall goal of this thesis is to better understand the CAF behavior as related to material properties of the coating layer.

A method was developed to produce free-standing pigmented coating layers thick enough to be tested in bending as well as tension. The mechanical properties of these …


A Study On Ultrasonic Energy Assisted Metal Processing : Its Correeltion With Microstructure And Properties, And Its Application To Additive Manufacturing., Anagh Deshpande May 2019

A Study On Ultrasonic Energy Assisted Metal Processing : Its Correeltion With Microstructure And Properties, And Its Application To Additive Manufacturing., Anagh Deshpande

Electronic Theses and Dissertations

Additive manufacturing or 3d printing is the process of constructing a 3-dimensional object layer-by-layer. This additive approach to manufacturing has enabled fabrication of complex components directly from a computer model (or a CAD model). The process has now matured from its earlier version of being a rapid prototyping tool to a technology that can fabricate service-ready components. Development of low-cost polymer additive manufacturing printers enabled by open source Fused Deposition Modeling (FDM) printers and printers of other technologies like SLA and binder jetting has made polymer additive manufacturing accessible and affordable. But the metal additive manufacturing technologies are still expensive …


Metal Thin Film Stiffness Extraction Technique For Surface Acoustic Wave Filters, Travis R. Weismeyer Dec 2018

Metal Thin Film Stiffness Extraction Technique For Surface Acoustic Wave Filters, Travis R. Weismeyer

Electronic Theses and Dissertations

Accurate knowledge of the surface acoustic wave (SAW) properties propagating at the surface of a piezoelectric substrate with thin films, electrodes or temperature compensated films, is critical in SAW filter design to meet the target frequency response, power durability and performance prior to device fabrication. While reliable material constants exist for substrates such as LiNbO3 used in SAW filters, the absolute elastic constants associated with operational thin films used for electrodes or temperature compensation do not exist. Although the bulk values of the constituent materials are known, the composite film/substrate properties are difficult to predict since they depend strongly on …


Low Temperature Desiccants In Atmospheric Water Generation., Sunil Gupta Dec 2018

Low Temperature Desiccants In Atmospheric Water Generation., Sunil Gupta

Electronic Theses and Dissertations

Surging global water demand as well as changes to weather patterns and over exploitation of natural water sources, such as ground water, has made potable water a critical resource in many parts of the World already – one rapidly heading towards a crisis situation. Desalination has been adopted as a solution – this is however energy intensive and impractical for most of the developing countries - those most in need of water. A renewable source of energy is solar thermal and solar photovoltaic. A plentiful source of water is the humidity in the atmosphere. This research is to push the …


Design, Analysis, And Application Of A Cellular Material/Structure Model For Metal Based Additive Manufacturing Process., Shanshan Zhang Dec 2017

Design, Analysis, And Application Of A Cellular Material/Structure Model For Metal Based Additive Manufacturing Process., Shanshan Zhang

Electronic Theses and Dissertations

Powder bed fusion additive manufacturing (PBF-AM) has been broadly utilized to fabricate lightweight cellular structures, which have promising potentials in many engineering applications such as biomedical prosthesis, aerospace, and architectural structures due to their high performance-to-weight ratios and unique property tailorabilities. To date, there is still a lack of adequate understanding of how the cellular materials are influenced by both the geometry designs and process parameters, which significantly hinders the effective design of cellular structures fabricated by PBF-AM for critical applications. This study aims to demonstrate a cellular structure design methodology that integrates geometrical design and process-material property designs. Utilizing …


Development And Degradation Analysis Of Novel Micro And Nanostructured Transition Metal Oxide (Tmo) Anodes For Aqueous Sodium Ion Batteries., Santanu Mukherjee May 2017

Development And Degradation Analysis Of Novel Micro And Nanostructured Transition Metal Oxide (Tmo) Anodes For Aqueous Sodium Ion Batteries., Santanu Mukherjee

Electronic Theses and Dissertations

One of the primary motivations driving battery technology research is the need to develop cleaner and more efficient energy storage systems. The portable electronics industry has developed exponentially, especially over the last couple of decades and therefore the importance of efficient electrochemical energy storage systems cannot be overstated. Li-ion batteries have been the predominant rechargeable energy in use, however, they have their own particular drawbacks viz. flammability of the electrolyte, expensive mining of the Li metal etc. This is where the importance of Na-ion batteries lie. This research focuses on using existing transition metal oxides (TMOs) and tuning their crystal …


Data Driven Discovery Of Materials Properties., Fadoua Khmaissia May 2017

Data Driven Discovery Of Materials Properties., Fadoua Khmaissia

Electronic Theses and Dissertations

The high pace of nowadays industrial evolution is creating an urgent need to design new cost efficient materials that can satisfy both current and future demands. However, with the increase of structural and functional complexity of materials, the ability to rationally design new materials with a precise set of properties has become increasingly challenging. This basic observation has triggered the idea of applying machine learning techniques in the field, which was further encouraged by the launch of the Materials Genome Initiative (MGI) by the US government since 2011. In this work, we present a novel approach to apply machine learning …


Computational Modeling Of Percolation Conduction And Diffusion Of Heterogeneous Materials, Jian Qiu Jan 2017

Computational Modeling Of Percolation Conduction And Diffusion Of Heterogeneous Materials, Jian Qiu

Electronic Theses and Dissertations

Heterogeneous materials provide a unique combination of desirable mechanical, thermal or electrical properties. This dissertation presents several micro-structure modeling approaches to predict the effective properties of heterogeneous materials and demonstrates its certain application toward two highly heterogeneous, unconventional structural composite materials (carbon fiber reinforced composite materials and graphene nanoplatelets composite). By using the efficient computational algorithm based on the FEA, a randomly oriented disk-shaped particles system are generated. A new element partition scheme based on the vector operations and geometry of inclusion has been implemented to mesh the intersected disks. The computed equivalent conductivity is expressed as a power-law function …


Zirconium Diboride, Hexagonal Boron Nitride, And Amorphous Alumina Thin Films For High Temperature Applications, David Murdock Stewart Dec 2016

Zirconium Diboride, Hexagonal Boron Nitride, And Amorphous Alumina Thin Films For High Temperature Applications, David Murdock Stewart

Electronic Theses and Dissertations

The use of microelectronic sensors and actuators in harsh, high temperature environments, such as power plants, turbine engines, and industrial manufacturing, could greatly improve the safety, reliability, and energy efficiency of these processes. The primary challenge in implementing this technology is the breakdown and degradation of thin films used in fabricating these devices when exposed to high temperatures >800 °C and oxidizing atmospheres. Zirconium diboride, hexagonal boron nitride, and amorphous alumina are candidate materials for use as thin film sensor components due to their high melting temperatures and stable phases. Zirconium diboride thin films have metallic-like electrical conductivity and remain …


Development Of Eco-Friendly Composite Foam Boards For Thermal Insulation And Packaging Purposes Using Cellulose Nanofibrils (Cnf), Nadir Yildirim Aug 2016

Development Of Eco-Friendly Composite Foam Boards For Thermal Insulation And Packaging Purposes Using Cellulose Nanofibrils (Cnf), Nadir Yildirim

Electronic Theses and Dissertations

Reducing energy consumption is a high priority in the United States and throughout the world. Energy used to heat and cool occupied constructed facilities is of particular concern, and one of the most effective strategies is insulating the building envelope. Historically, builders used whatever material was available to fill the void between interior and exterior walls, including wool fibers, paper, and even corn cobs. Today, homes are built using foam insulation that harden when applied, blown-in loose insulation, fiberglass mats or rigid foam boards usually composed of polystyrene. Rigid foam boards are used in a variety of applications despite the …


Early-Age Hydration Studies Of Portland Cement, Fengjuan Liu Dec 2014

Early-Age Hydration Studies Of Portland Cement, Fengjuan Liu

Electronic Theses and Dissertations

Our current knowledge on cement hydration during setting is based on the discrete observation of hydrated paste. An advanced micro/nano-level technique which can perform the in-situ observation on the continuous hydration of cement paste is demanded. In this study, Raman spectroscopy (RS) was chosen as such a method to continuously investigate wet pastes. The objective of this research is to explore the hydration process and microstructural development of fresh pastes with this technique. This research was conducted in three phases. First, the RS analysis was used to continuously observe the cement hydration from 20 minutes after mixing to 9 hours. …


Degradation Of High Voltage Glass Fiber-Reinforced Polymer Matrix Composites By Aggressive Environmental Conditions, Tianyi Lu Jan 2014

Degradation Of High Voltage Glass Fiber-Reinforced Polymer Matrix Composites By Aggressive Environmental Conditions, Tianyi Lu

Electronic Theses and Dissertations

Polymer matrix composites reinforced with either E glass or ECR glass fibers-reinforced are used in a variety of high voltage electrical applications because of their advantages like lower weight and cost. However, they can be damaged by aggressive in-service conditions such as high temperature, ultraviolet radiation, moisture, ozone and corrosive environments. Different degradation mechanisms can develop in high voltage PMCs under those extreme environments, which, in turn, can affect the long term structural durability of the composites. A set of PMCs reinforced with ECR-glass and E-glass fibers embedded in four different resins has been investigated in this study. In addition, …


Development And Validation Of Probabilistic Fatigue Models Containing Out-Life Suspensions, Noel S. Murray Jan 2012

Development And Validation Of Probabilistic Fatigue Models Containing Out-Life Suspensions, Noel S. Murray

Electronic Theses and Dissertations

Author's abstract: In the area of reliability engineering it is necessary to be confident that a component or system of components will not fail under use for safety and cost reasons. One major mechanism of failure to a mechanical component is fatigue. This is the repetitious motion of loading and unloading of the material, typically below the ultimate tensile strength of the material, which ultimately leads to a catastrophic failure. To ensure this does not happen, engineers design components based on tests to determine the life of these components. These tests are typically conducted on a bench type tester in …