Open Access. Powered by Scholars. Published by Universities.®

Other Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Civil Engineering

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 48

Full-Text Articles in Other Materials Science and Engineering

3d Experimental Studies Of Temperature And Crystallographic Effects On Creep And Strength In Rock Salt, Amirsalar Moslehy Dec 2023

3d Experimental Studies Of Temperature And Crystallographic Effects On Creep And Strength In Rock Salt, Amirsalar Moslehy

Doctoral Dissertations

Salt domes utilization as storage reservoirs in the energy sector has led to extensive studies on rock salt’s mechanical and geothermal behavior. These important facilities’ safety and serviceability rely on understanding rock salt’s compressive strength and creep behavior under various loading directions, water contents, in-situ stresses, and temperatures. Despite numerous studies on rock salt’s mechanical behavior in the literature, there are still many unanswered questions about rock salt’s behavior. This dissertation was aimed at utilizing state-of-the-art experimental techniques such as 3D synchrotron micro-computed tomography (SMT) and 3D x-ray diffraction (3DXRD) along with hundreds of compression and creep experiments to enhance …


Mechanical And Durability Properties Of Fly Ash Geopolymer Concrete – A Review, Ali Shebli, Jamal Khatib, Adel Elkordi Jun 2023

Mechanical And Durability Properties Of Fly Ash Geopolymer Concrete – A Review, Ali Shebli, Jamal Khatib, Adel Elkordi

BAU Journal - Science and Technology

Geopolymers have emerged as a promising alternative for Ordinary portland cement (OPC) in construction industry, due to their potential to minimize the emissions of carbon dioxide (CO2) and improve the efficiency of waste recycling. This paper aims to study the fresh and hardened properties of fly ash geopolymer concrete (GPC), as well as to review the raw materials used in the production of geopolymers. Several factors impact the mechanical and durability properties of fly ash GPC, including the specific type of fly ash utilized, the curing temperature, the alkaline activator (AA) concentration, and the type of AA used. …


Hdd Dataset: Optimising Retrofitted Insulation For Irish Residential Building Walls, Rakshit D. Muddu, Aimee Byrne, Anthony James Robinson Jan 2023

Hdd Dataset: Optimising Retrofitted Insulation For Irish Residential Building Walls, Rakshit D. Muddu, Aimee Byrne, Anthony James Robinson

Datasets

In this study, a thermal-economic analysis was conducted to determine the optimum insulation thickness of retrofitted insulation walls in different regions in Ireland. This was based on the Heating Degree Day method (HDD). This dataset contains optimum insulation thickness, payback period, cost savings and carbon emission for all 25 counties in the Republic of Ireland


Mechanical And Durability Properties Of Geopolymer Concrete – A Review, Lelian Elkhatib, Fadi Al Aridi, Adel Elkordi, Jamal Khatib Jun 2022

Mechanical And Durability Properties Of Geopolymer Concrete – A Review, Lelian Elkhatib, Fadi Al Aridi, Adel Elkordi, Jamal Khatib

BAU Journal - Science and Technology

Owing to the ongoing increase in human population, there is a need for more construction projects including residential buildings and other amenities. Concrete is by far the dominant material used in construction and cement is a main ingredient. Cement manufacture is an energy intensive process and emit large amounts of carbon dioxide into the atmosphere. A reduction in the amount of cement used in construction is greatly beneficial. The use of geopolymer or alkali activated materials can serve this purpose as it attempts to totally replace cement in concrete. Geopolymers are materials that consist mainly of silica and alumina materials …


Crystalline Analysis Of Geomicrobially-Induced Calcium Carbonate Precipitation In Sands Using A Surface Percolation Treatment Technique, Justin Edward Mulloney Jan 2022

Crystalline Analysis Of Geomicrobially-Induced Calcium Carbonate Precipitation In Sands Using A Surface Percolation Treatment Technique, Justin Edward Mulloney

UNF Graduate Theses and Dissertations

Ottawa 50/70 sand specimens and natural beach sand samples were treated using bio-augmented geomicrobies via a surface percolation technique. Testing was conducted on these specimens to determine how resultant calcium carbonate precipitation changed as a function of temperature, depth from the surface, and in the presence of magnesium. Specifically, x-ray Diffraction (XRD), a Scanning Electron Microscope (SEM), and Energy Dispersive X-ray Spectroscopy (EDS) were used to determine and quantify the presence of calcium carbonate and its associated phase. Results showed a direct relationship between temperature and precipitated calcium carbonate. In addition, as an unintended consequence associated with the treatment, ammonium …


Harnessing The Mechanics Of Thin-Walled Metallic Structures: From Plate-Lattice Materials To Cold-Formed Steel Shear Walls, Fani Derveni Jun 2021

Harnessing The Mechanics Of Thin-Walled Metallic Structures: From Plate-Lattice Materials To Cold-Formed Steel Shear Walls, Fani Derveni

Doctoral Dissertations

Thin-walled structures have received a lot of interest during the last years due to their light weight, cost efficiency, and ease in fabrication and transportation, along with their high strength and stiffness. This dissertation focuses on the mechanical performance of thin-walled metallic structures from cold-formed steel shear walls and connections (PART I) to plate-lattice architected materials (PART II) via computational, experimental, and probabilistic methods. Cold-formed steel (CFS) shear walls subjected to seismic loads is the focus of PART I of this dissertation. An innovative three-dimensional shell finite element model of oriented strand board (OSB) sheathed CFS shear walls is introduced …


Experimental Investigation Of The Performance Of A Hybrid Self-Healing System In Porous Asphalt Under Fatigue Loadings, Shi Xu, Liu Xueyan, Amir Tabakovic, Erik Schlangen Jun 2021

Experimental Investigation Of The Performance Of A Hybrid Self-Healing System In Porous Asphalt Under Fatigue Loadings, Shi Xu, Liu Xueyan, Amir Tabakovic, Erik Schlangen

Articles

Self-healing asphalt, which is designed to achieve autonomic damage repair in asphalt pavement, offers a great life-extension prospect and therefore not only reduces pavement maintenance costs but also saves energy and reduces CO2 emissions. The combined asphalt self-healing system, incorporating both encapsulated rejuvenator and induction heating, can heal cracks with melted binder and aged binder rejuvenation, and the synergistic effect of the two technologies shows significant advantages in healing efficiency over the single self-healing method. This study explores the fatigue life extension prospect of the combined healing system in porous asphalt. To this aim, porous asphalt (PA) test specimens with …


Computational Design Of Nonlinear Stress-Strain Of Isotropic Materials, Askhad M.Polatov, Akhmat M. Ikramov, Daniyarbek Razmukhamedov May 2021

Computational Design Of Nonlinear Stress-Strain Of Isotropic Materials, Askhad M.Polatov, Akhmat M. Ikramov, Daniyarbek Razmukhamedov

Chemical Technology, Control and Management

The article deals with the problems of numerical modeling of nonlinear physical processes of the stress-strain state of structural elements. An elastoplastic medium of a homogeneous solid material is investigated. The results of computational experiments on the study of the process of physically nonlinear deformation of isotropic elements of three-dimensional structures with a system of one- and double-periodic spherical cavities under uniaxial compression are presented. The influence and mutual influence of stress concentrators in the form of spherical cavities, vertically located two cavities and a horizontally located system of two cavities on the deformation of the structure are investigated. Numerical …


Bio-Binder—Innovative Asphalt Technology, Amir Tabakovic Dec 2020

Bio-Binder—Innovative Asphalt Technology, Amir Tabakovic

Articles

The global road network spans 16.3 million km [1], of which 5 million km is in the EU. These road networks fulfil major economic and social goals by facilitating the movement of goods and people throughout the EU, and are therefore of the utmost importance to the economic and social life of the EU [2]. National governments invest heavily in their road networks, e.g., in 2014, EUR 53.33 billion was invested in the development and maintenance of the EU road network [3]. Each year, the world produces 1.6 trillion tonnes of asphalt [4], of which 218 million tonnes is produced …


Exploring The Variability In The Gray Scale Imaging Process Of Asphalt Samples, David Oluwawade Olatunji Dec 2020

Exploring The Variability In The Gray Scale Imaging Process Of Asphalt Samples, David Oluwawade Olatunji

Civil Engineering Undergraduate Honors Theses

Gray scale image analysis is a powerful tool for testing asphalt concrete materials. From material composition to surface properties, gray scale analysis has shown evidence as a non-invasive way to obtain information from asphalt samples. Casillas et al. used a gray scale analysis to measure the Representative Volume Element of three asphalt sample geometries to understand the minimum size at which an asphalt sample is representative of a larger homogeneous mixture [1]. While the gray scale analysis used in this experiment yielded results, there were unknown factors in the image capturing process. Particularly, not much was known about the effect …


Effect Of Incorporating Pottery And Bottom Ash As Partial Replacement Of Cement, Bassam A. Tayeh, Doha M. Alsaffar, Lawend K. Askar, Asmahan Issa Jubeh Dec 2019

Effect Of Incorporating Pottery And Bottom Ash As Partial Replacement Of Cement, Bassam A. Tayeh, Doha M. Alsaffar, Lawend K. Askar, Asmahan Issa Jubeh

Karbala International Journal of Modern Science

This study addressed the environmental constraints in cement produc­tion. Ordinary Portland cement (OPC) was replaced with pottery powder (PP, produced by grinding locally available pottery) and bottom ash (BA) at 10%, 20% and 30% of cement mass. Moreover, 4% calcium chloride solution (CaCl2.2H2O) was used as mixing water. Material properties, such as standard consistency, setting time and compressive strength, were measured with different percentages of OPC replacement with PP and BA. Results indicated that the replacement with PP and BA increased the water demand to achieve the standard consistency. These results revealed that the strength evolution …


Biopolymer-Stabilized Earth Materials For Resilient And Adaptable Infrastructures, Sherif Abdelaziz, Dilip Gersappe, Dilip Rafailovich Sep 2019

Biopolymer-Stabilized Earth Materials For Resilient And Adaptable Infrastructures, Sherif Abdelaziz, Dilip Gersappe, Dilip Rafailovich

Department of Civil Engineering Faculty Publications

Earth dams and levees are constructed and retrofitted nowadays using the same materials that were used in the past, clays and sands. Despite the current advances in engineering, designing and constructing these critical infrastructure, earthen dams and levees continue to suffer from the same challenges over the years. These challenges include internal and surface erosions, loss of stability due to moisture migration, and inabilities to self-heal potential failure points. This project focuses on the use of biopolymers as additives to strengthen earthen dams and levees targeting an overall increase in their resilience.

Explicitly, the report for Milestone 3 presented the …


Mitigating Reflective Cracking Through The Use Of A Ductile Concrete Interlayer, Qian Zhang, Mohammad Khattak, Adway Das Sep 2019

Mitigating Reflective Cracking Through The Use Of A Ductile Concrete Interlayer, Qian Zhang, Mohammad Khattak, Adway Das

Publications

Reflective cracking is considered one of the most important issues that causes premature deterioration of composite pavements. Many types of mitigation methods have been studied in the past. However, they are either not effective in delaying the reflective cracking, or they only extend the service life by a few years. To address this critical issue and significantly extend the service life of the composite pavement, in this research, a ductile interlayer made of engineered cementitious composites (ECC) was proposed. It was hypothesized that by adding a thin layer of highly ductile ECC material between the existing pavement and overlay, reflective …


Hydcem: A New Cement Hydration Model, Niall Holmes, Denis Kelliher, Mark Tyrer Aug 2019

Hydcem: A New Cement Hydration Model, Niall Holmes, Denis Kelliher, Mark Tyrer

Conference papers

Hydration models are useful to predict, understand and describe the behaviour of different cementitious-based systems. They are indispensable for undertaking long-term performance and service life predictions for existing and new products for generating quantitative data in the move towards more sustainable cements while optimising natural resources. One such application is the development of cement-based thermoelectric applications.

HYDCEM is a new model to predict the phase assemblage, degree of hydration, heat release and changes in pore solution chemistry over time for cements undergoing hydration for any w/c ratio and curing temperatures up to 450C. HYDCEM, written in MATLAB, is aimed at …


Optimizing The Valorization Of Industrial By-Products For The Induction Healing Of Asphalt Mixtures, Amir Tabakovic, Marta Vila-Cortavitarte, Daniel Jato-Espino, Daniel Castro-Fresno Aug 2019

Optimizing The Valorization Of Industrial By-Products For The Induction Healing Of Asphalt Mixtures, Amir Tabakovic, Marta Vila-Cortavitarte, Daniel Jato-Espino, Daniel Castro-Fresno

Articles

Self-healing within asphalt pavements is the process whereby road cracks can be repaired automatically when thermal and mechanical conditions are met. To accelerate and improve this healing process, metal particles are added to asphalt mixtures. However, thisapproach is costly both in economic and environmental terms due to the use of virgin metallic particles. So, even though the self-healing of asphalt mixtures has been widely addressed in experimental terms over the years, there is a lack of research aimed at modelling this phenomenon, especially with the purpose of optimizing the use of metal particles through the valorization of industrial by-products. As …


Elimination Of Empirical, Ineffective And Expensive Pg Plus Tests To Characterize Modified Binders, Zahid Hossain, Ashraf Elsayed, Mm Tariq Morshed, Mohammad Hassan Aug 2019

Elimination Of Empirical, Ineffective And Expensive Pg Plus Tests To Characterize Modified Binders, Zahid Hossain, Ashraf Elsayed, Mm Tariq Morshed, Mohammad Hassan

Data

Corresponding data set for Tran-SET Project No. 18BASU02. Abstract of the final report is stated below for reference:

"For characterizing the polymer modified binders, different state Departments of Transportation (DOTs) use different time consuming and empirical Performance Grade (PG) Plus test methods. Furthermore, the PG Plus tests are silent when asphalt binders are modified with chemicals such as polyphosphoric acid (PPA). But, the effects of the elastomeric or plastomeric polymer are not accurately identified through these conventional tests such as Elastic Recovery (ER) and tenacity. Thus, the main research goal of this study is to recommend alternative test method(s), which …


Self-Healing Concrete Using Encapsulated Bacterial Spores In A Simulated Hot Subtropical Climate, Marwa Hassan, Jose Milla, Tyson Rupnow, Ahsennur Soysal Aug 2019

Self-Healing Concrete Using Encapsulated Bacterial Spores In A Simulated Hot Subtropical Climate, Marwa Hassan, Jose Milla, Tyson Rupnow, Ahsennur Soysal

Publications

Bacterial concrete has become one of the most promising self-healing alternatives due to its capability to seal crack widths through microbial induced calcite precipitation (MICP). In this study, two bacterial strains were embedded at varying dosages (by weight of cement) in concrete. Beam specimens were used to identify the maximum crack-sealing efficiency, while cylinder samples were used to determine their effects on the intrinsic mechanical properties, as well as its stiffness recovery over time after inducing damage. The concrete specimens were cured in wet-dry cycles to determine their feasibility in Region 6. The results showed that the specimen groups with …


Elimination Of Empirical, Ineffective And Expensive Pg Plus Tests To Characterize Modified Binders, Zahid Hossain, Ashraf Elsayed, Mm Tariq Morshed, Mohammad Hassan Aug 2019

Elimination Of Empirical, Ineffective And Expensive Pg Plus Tests To Characterize Modified Binders, Zahid Hossain, Ashraf Elsayed, Mm Tariq Morshed, Mohammad Hassan

Publications

For characterizing the polymer modified binders, different state Departments of Transportation (DOTs) use different time consuming and empirical Performance Grade (PG) Plus test methods. Furthermore, the PG Plus tests are silent when asphalt binders are modified with chemicals such as polyphosphoric acid (PPA). But, the effects of the elastomeric or plastomeric polymer are not accurately identified through these conventional tests such as Elastic Recovery (ER) and tenacity. Thus, the main research goal of this study is to recommend alternative test method(s), which can possibly be pursued by using a commonly available device, a Dynamic Shear Rheometer (DSR). Three PG binders …


Use Of Rice Husk Ash (Rha) In Flowable Fill Concrete Mix Material, Zahid Hossain, Kazi Tamzidul Islam Aug 2019

Use Of Rice Husk Ash (Rha) In Flowable Fill Concrete Mix Material, Zahid Hossain, Kazi Tamzidul Islam

Publications

In the way of finding sustainable development, the flowable fill is a relatively new construction technology. Flowable fill is a self-compacting material, which has been developed in recent years. Flowable fill has been used for different applications such as backfilling walls, sewer trenches, bridge abutments, conduit trenches, pile excavations, and retaining walls. This study examines the potential uses of Rice Husk Ash (RHA) as a sustainable cementitious material (SCM) in the preparation of flowable fill concrete. (RHA is an agricultural by-product of the rice milling process. This study has evaluated the usage of RHA in producing low strength and self-consolidating …


Use Of Bagasse Ash As A Concrete Additive For Road Pavement Application, Gabriel Arce, Marwa Hassan, Maria Gutierrez, Michele Barbato Aug 2019

Use Of Bagasse Ash As A Concrete Additive For Road Pavement Application, Gabriel Arce, Marwa Hassan, Maria Gutierrez, Michele Barbato

Publications

The objective of this study was to evaluate the use of sugarcane bagasse ash (SCBA) as a partial replacement of cement in concrete for road pavement application. The study explored the pozzolanic activity of SCBA produced from three different processing methodologies (i.e., raw SCBA, controlled SCBA and post-processed SCBA). The experimental results revealed that SCBA produced by the controlled burning of sugarcane bagasse fiber (SBF) at 650°C and grinding (C-650), presented the maximum pozzolanic activity. However, this SCBA production process was deemed challenging for large-scale industrial application due to low SCBA yield (i.e., 3 to 6%). On the other hand, …


Mechanical Performance Of Structural Systems With Missing Members: From Buildings To Architected Materials, Panagiotis Pantidis Jul 2019

Mechanical Performance Of Structural Systems With Missing Members: From Buildings To Architected Materials, Panagiotis Pantidis

Doctoral Dissertations

Structural systems are potentially subjected to damage initiating scenarios throughout the course of their service time. Depending on the nature and extent of the damaging event, they may experience significant reduction or even complete loss of their mechanical performance. This dissertation delves into the mechanics of structural systems under the notion of missing members from their domain, investigating types of structural systems: a) multi-story steel framed buildings, and b) materials with a truss-lattice microstructure. Part I of the dissertation investigates the performance of multi-story steel framed buildings under a column removal scenario, developing an analytical framework for their quasi-static robustness …


Investigating The Rapid Curing Possibility Of Geopolymer Concrete, Ashlesh Banjara May 2019

Investigating The Rapid Curing Possibility Of Geopolymer Concrete, Ashlesh Banjara

Master's Theses

Recent studies of heat-cured fly ash based green geopolymer concrete have shown its suitability for fabrication of structural members. Fabrication of these structural members requires continuous moderate heating (145°F) for 24 hrs, and an oven essential, for a large member can quickly turn into an energy guzzler, potentially eliminating the green credentials of the product. The proposed research involves the development of a frontal polymerization (FP) method that achieves rapid curing of geopolymer at ambient condition after short-term heat application. Initial work shows thermal FP in geopolymer is a possibility and might be a solution to the problem. The process …


The Influence Of Asphalt Ageing On Induction Healing Effect On Porous Asphalt Concrete, Shi Xu, Xueyan Liu, Amir Tabakovic, Erik Schlangen Feb 2019

The Influence Of Asphalt Ageing On Induction Healing Effect On Porous Asphalt Concrete, Shi Xu, Xueyan Liu, Amir Tabakovic, Erik Schlangen

Articles

Induction healing is a proven technology which is able to improve the self‐healing capacity of asphalt concrete. Healing is achieved via electromagnetic current produced by passing induction machine, where steel asphalt constituents heat up which in turn soften the bitumen in the asphalt layer, allowing it to flow and close cracks, repairing the damage. This paper reports on the study which investigated the influence of ageing on the healing capacity of Porous Asphalt (PA) concrete. Porous Asphalt concrete mix was prepared first, then subjected to an accelerated (laboratory) ageing process using a ventilated oven. In order to further evaluate the …


Optimization Of The Calcium Alginate Capsules For Self-Healing Asphalt, Shi Xu, Amir Tabakovic, Xueyan Liu, Damian Palin, Erik Schlangen Jan 2019

Optimization Of The Calcium Alginate Capsules For Self-Healing Asphalt, Shi Xu, Amir Tabakovic, Xueyan Liu, Damian Palin, Erik Schlangen

Articles

Featured Application: This self-healing technology for asphalt pavements has the potential to greatly disrupt asphalt production methods (which have been stable over the past 100 years).This paper presents a development process of ‘calcium-alginate microcapsules encapsulating an asphalt bitumen rejuvenator’. The encapsulated rejuvenator is released when required (on demand) which rejuvenates the aged binder. Once crack is initiated and starts propagating it encounters a microcapsule, energy at tip of the crack opens the microcapsule, releasing the rejuvenator (healing agent). The rejuvenator will infuse into the aged binder soften it, allowing to flow, two broken edges to get into a contact and …


Bending Response Of Timber Mortise And Tenon Joints Reinforced With Filler-Modules And Frp Gussets, Andrew Robert Pacifico Jan 2019

Bending Response Of Timber Mortise And Tenon Joints Reinforced With Filler-Modules And Frp Gussets, Andrew Robert Pacifico

Graduate Theses, Dissertations, and Problem Reports

In 2013, the California Bay Area (CBA) passed a set of ordinances to ensure that their 10,000 plus timber soft-story buildings were prepared for seismic events, through nondestructive evaluation methods. Many property owners are searching for an affordable retrofitting system that will also meet CBA’s new laws focusing on installations by the mandated deadlines in 2020. Over the past three to four decades, Fiber Reinforced Polymer (FRP) composites have found their way into the civil infrastructure sector for rehabilitation. The objective of this study is to evaluate the bending behavior retrofitted mortise and tenon timber joints reinforced with engineered wood …


Enhancing The Durability And The Service Life Of Asphalt Pavements Through Innovative Light-Induced Self-Healing Materials, Marwa Hassan Dec 2018

Enhancing The Durability And The Service Life Of Asphalt Pavements Through Innovative Light-Induced Self-Healing Materials, Marwa Hassan

Data

Corresponding data set for Tran-SET Project No. 17BLSU02. Abstract of the final report is stated below for reference:

"The objective of this study was to evaluate the efficiency of a new generation of Ultraviolet (UV) light-induced self-healing polymers in enhancing the durability and self-healing properties of asphalt mixtures. Self-healing polymers were successfully synthesized in the laboratory and were characterized using Fourier Transform Infrared Spectroscopy (FTIR). In addition, Thermogravimetric Analysis (TGA) results showed that the synthesized polymers achieved the required thermal stability to resist asphalt mixture production processes. Viscosity results showed that addition of 5% Recycled Asphalt Shingle (RAS) and/or 20% …


Development Of A Self-Healing And Rejuvenating Mechanisms For Asphalt Mixtures Containing Recycled Asphalt Shingle, Marwa Hassan Dec 2018

Development Of A Self-Healing And Rejuvenating Mechanisms For Asphalt Mixtures Containing Recycled Asphalt Shingle, Marwa Hassan

Data

Corresponding data set for Tran-SET Project No. 17BLSU06. Abstract of the final report is stated below for reference:

"The objective of this study was to test the hypothesis that hollow-fibers encapsulating a rejuvenator product could improve both self-healing, rejuvenation, and mechanical properties of asphalt mixtures. Hollow-fibers containing a rejuvenating product were synthesized via a wet spinning procedure with sodium-alginate polymer as the encapsulating material. An optimization of the production parameters for the synthesis of fibers was performed to develop fibers suitable for high-temperature and shear stress environment typical of asphalt mixture production. A self-healing experiment was conducted to evaluate the …


Integrated Health Monitoring And Reinforcement Of Transportation Structures With Optimized Low-Cost Multifunctional Braided Cables, Ibrahim Karaman, Darren Hartl Dec 2018

Integrated Health Monitoring And Reinforcement Of Transportation Structures With Optimized Low-Cost Multifunctional Braided Cables, Ibrahim Karaman, Darren Hartl

Data

Corresponding data set for Tran-SET Project No. 17STTAM04. Abstract of the final report is stated below for reference:

"Corresponding data set for The objective of this research study is to design, fabricate, and characterize multifunctional high strength and self-sensing braided cables and structures using novel Fe-based shape memory alloys (SMAs). The system exploits unique properties of recently developed low-cost super-elastic FeMnAlNi SMAs, which enables excellent super-elastic properties, high strength, and self-sensing in structural health monitoring (SHM) systems. This novel material technology can be coupled with modeling efforts that allow for accurate prediction of both the materials and structural response during …


Development Of A Self-Powered Structural Health Monitoring System For Transportation Infrastructure, Aydin Karsilaya, Samer Dessouky, Athanassios Papagiannakis Dec 2018

Development Of A Self-Powered Structural Health Monitoring System For Transportation Infrastructure, Aydin Karsilaya, Samer Dessouky, Athanassios Papagiannakis

Data

Corresponding data set for Tran-SET Project No. 17PTAM03. Abstract of the final report is stated below for reference:

"Roadways and bridges play an important role in the economic and social health of society by connecting commerce and people. Economic growth and population expansion pose considerable burden on the aging infrastructure (i.e., pavements and bridges). There is a pressing need to develop structural health monitoring (SHM) technologies capable of collecting infrastructure utilization data. Doing so inexpensively with self-powered systems will revolutionize infrastructure monitoring technology, and will improve decision making enabling roadway and bridge preservation. In this study, a self-powered battery-less structural …


Use Of Ultra-High-Performance Fiber-Reinforced Concrete (Uhp-Frc) For Fast And Sustainable Repair Of Pavements, Shih-Ho Chao Dec 2018

Use Of Ultra-High-Performance Fiber-Reinforced Concrete (Uhp-Frc) For Fast And Sustainable Repair Of Pavements, Shih-Ho Chao

Publications

This research presents a new methodology, which enables streets, roads, highways, bridges, and airfields to use an advanced fiber-reinforced concrete material, which can delay or prevent the deterioration of these transportation infrastructure when subjected to traffic and environmental loadings. The major problem of concrete is its considerable deterioration and limited service life due to its brittleness and limited durability. As a result, it requires frequent repair and eventual replacement, which consumes more natural resources. Ultra-high-performance fiber-reinforced concrete (UHP-FRC) introduces significant enhancement in the sustainability of concrete structures due to its dense microstructure and damage-tolerance characteristics. These characteristics can significantly reduce …