Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Graduate Theses, Dissertations, and Problem Reports

Discipline
Keyword
Publication Year

Articles 1 - 30 of 58

Full-Text Articles in Materials Science and Engineering

Investigation Of Oxidation And Corrosion Resistance Of Ni-Based Alloys And Stainless Steels Under Co2 Environments At Elevated Temperatures, Spencer Roy Fultineer Jan 2023

Investigation Of Oxidation And Corrosion Resistance Of Ni-Based Alloys And Stainless Steels Under Co2 Environments At Elevated Temperatures, Spencer Roy Fultineer

Graduate Theses, Dissertations, and Problem Reports

High mechanical strength integrity, high robustness towards oxidation, and high resistance to carburization under CO2 environments at elevated temperatures are usually required for metallic systems that are employed for power generation. INCONEL 625 is a nickel-based superalloy that started development in the 1950s. This material was designed with the distinct purpose of use in high-temperature and high-pressure systems. While various materials possess the physical properties to handle these conditions, the creation of IN625 addresses the need for a material to withstand the highly corrosive properties of these kinds of environments. In order to evaluate the oxidation and corrosion resistance of …


Development Of Inconel 718f And Inconel 718e Powders For Parts Manufacturing Utilizing Binder Jet Three-Dimensional Printing And Compressed Pellet Methods, Duncan Eric Manor Ii Jan 2023

Development Of Inconel 718f And Inconel 718e Powders For Parts Manufacturing Utilizing Binder Jet Three-Dimensional Printing And Compressed Pellet Methods, Duncan Eric Manor Ii

Graduate Theses, Dissertations, and Problem Reports

Alloy Inconel 718 is a Ni based superalloy used for high temperature applications including turbine blades, turbocharger rotors and nuclear reactors. Inconel 718 is a popular commercial atomized powder that has limitations in performance for use in additive manufacturing applications due to poor part quality and efficiency of current fabrication methods. Developing new compositions and additive manufacturing (AM) methodologies of IN718 is critical to improve the quality and the efficiency of IN718 parts manufacturing. Developing new additive manufacturing methodology that produces higher quality parts made of IN718 as compared to current methods has the potential to greatly impact industry, academia, …


Ambient Ammonia Synthesis Via Microwave-Catalytic Materials And Plasma Chemistry, Siobhan Brown Jan 2023

Ambient Ammonia Synthesis Via Microwave-Catalytic Materials And Plasma Chemistry, Siobhan Brown

Graduate Theses, Dissertations, and Problem Reports

Ammonia is critical to supporting human life on earth because of its use as fertilizer. The Haber-Bosch process to produce ammonia has been practiced for over 100 years. This process operates at high pressure and temperature to overcome the thermodynamic and kinetic limitations of the ammonia synthesis reaction thus researchers have tried to overcome it for decades. At present this process represents 1% of global energy usage and 2.5% of global CO2 emissions. The proposed chemical looping ammonia synthesis approach seeks to reduce the environmental impact of this critical process and to elucidate microwave-catalytic principles.

This research aims to …


Stability Of Ruddlesden-Popper Phase Lanthanum Nickelate As Air Electrode For Reversible Solid Oxide Cells, Daniel De Lorenzo Moreira Jan 2023

Stability Of Ruddlesden-Popper Phase Lanthanum Nickelate As Air Electrode For Reversible Solid Oxide Cells, Daniel De Lorenzo Moreira

Graduate Theses, Dissertations, and Problem Reports

This thesis studied the long-term stability of Ruddlesden-Popper phase Lanthanum Nickelate under operating conditions as the air electrode for Reversible Solid Oxide Cells (R-SOC). Renewable energies have gone through increase in popularity throughout the last decades, mainly due to the consequences of the rapid population growth in the world. These new energies have been pointed as the rightful successor of fossil fuel energies in order to decrease the environmental impact of our day-to-day life. Solid Oxide Fuel Cells as well as Solid Oxide Electrolysis Cells are believed to be the key to stabilizing the energy supply when environmental conditions are …


Multimaterial, Core-Shell Direct Ink Writing Of Flexible Strain Sensors For Pneumatically-Actuated Soft Robotic Hinge Joints, John Michael Burke Jan 2023

Multimaterial, Core-Shell Direct Ink Writing Of Flexible Strain Sensors For Pneumatically-Actuated Soft Robotic Hinge Joints, John Michael Burke

Graduate Theses, Dissertations, and Problem Reports

Direct ink writing (DIW) provides for an expansive material library and the ability to print multiple materials with tailored functionalities in a controllable and single-step process. Particularly beneficial is the net shape printing under ambient conditions of a wide range of materials normally incompatible with one another. Coaxial DIW is a 3D printing technique that allows for two dissimilar inks to be extruded simultaneously in a co-flow manner. In this work, custom-designed coaxial nozzles were 3D-printed using a stereolithography printer. Composite inks comprised of thermoplastic polyurethane and silver were developed and studied. The coaxial nozzles were then used to co-extrude …


System Analysis Of An Internal Combustion Engine (Ice) – Solid Oxide Fuel Cell (Sofc) Hybrid Cycle, Jose Javier Colon Rodriguez Jan 2023

System Analysis Of An Internal Combustion Engine (Ice) – Solid Oxide Fuel Cell (Sofc) Hybrid Cycle, Jose Javier Colon Rodriguez

Graduate Theses, Dissertations, and Problem Reports

Due to the intermittent nature of renewable energy and the rigid operation of existing coal plants, the need for flexible power generation technology is eminent. Hybrid energy systems have shown potential for flexible, grid following dynamics while maintaining higher efficiencies. The work below focuses on the performance analysis of a proposed 100 kW pressurized Internal Combustion Engine (ICE) and Solid Oxide Fuel Cell (SOFC) hybrid system. The un-utilized fuel from the SOFC stack provided the chemical energy to operate the engine. A turbocharger was used to deliver the necessary air flow for both the stack and engine. An external reformer …


Material Characterization Of Thermoplastic Polyurethane (Tpu) And Thermoplastic Elastomers (Tpe) For Development Of 3d-Printed Surrogate Organs For Medical Training, Anastasia Elizabeth Lucci Jan 2023

Material Characterization Of Thermoplastic Polyurethane (Tpu) And Thermoplastic Elastomers (Tpe) For Development Of 3d-Printed Surrogate Organs For Medical Training, Anastasia Elizabeth Lucci

Graduate Theses, Dissertations, and Problem Reports

Cadaveric specimens are a necessary, albeit limited, resource for training medical students on basic surgical skills. The availability of surrogate 3D-printed organs would readily allow access to resources that could reduce or potentially eliminate the need for cadaveric specimens or, at a minimum, provide students the opportunity to practice with 3D-printed surrogates before transitioning to those specimens. This research focuses on determining which thermoplastic material most closely mimics mechanical properties such as hardness and stiffness of human organs and allows 3D printing surrogate organs to be used as safe, educational tools. Relatively “soft” materials such as thermoplastic polyurethanes (TPU) and …


Synthesis Of Quasi-Freestanding Graphene Films Using Radical Species Formed In Cold Plasmas, Michael A. Mathews Jr. Jan 2023

Synthesis Of Quasi-Freestanding Graphene Films Using Radical Species Formed In Cold Plasmas, Michael A. Mathews Jr.

Graduate Theses, Dissertations, and Problem Reports

For over a decade, the Stinespring laboratory has investigated scalable, plasma assisted synthesis (PAS) methods for the growth of graphene films on silicon carbide (SiC). These typically utilized CF4-based inductively coupled plasma (ICP) with reactive ion etching (RIE) to selectively etch silicon from the SiC lattice. This yielded a halogenated carbon-rich surface layer which was then annealed to produce the graphene layers. The thickness of the films was controlled by the plasma parameters, and overall, the process was readily scalable to the diameter of the SiC wafer.

The PAS process reproducibly yielded two- to three-layer thick graphene films …


Minimizing Cr-Evaporation From Balance Of Plant Components By Utilizing Cost-Effective Alumina-Forming Austenitic Steels, Lingfeng Zhou Jan 2022

Minimizing Cr-Evaporation From Balance Of Plant Components By Utilizing Cost-Effective Alumina-Forming Austenitic Steels, Lingfeng Zhou

Graduate Theses, Dissertations, and Problem Reports

A solid oxide fuel cell (SOFC) is a clean and efficient energy conversion device. The development of intermediate-temperature SOFCs has made it preferable to use metallic interconnects (MICs) to greatly reduce the cost and significantly increase the efficiency compared to ceramic interconnect materials. However, gaseous chromium species will evaporate from the chromium-containing layer formed on the surface of commonly used MICs and balance of plant (BoP) components. Volatile chromium species have been shown to form solid deposits which poison the cathodes of SOFCs, causing drastic cell performance degradation and thereby limiting commercialization. In order to alleviate the Cr poisoning and …


Low-Temperature Hot Corrosion Of Boilers In The Coal-Fired Power Plant, Artem Gavrilev Jan 2022

Low-Temperature Hot Corrosion Of Boilers In The Coal-Fired Power Plant, Artem Gavrilev

Graduate Theses, Dissertations, and Problem Reports

Hot corrosion of materials has remained a relevant topic since its introduction in the second half of the 20th century as gas turbine engines suffered severe corrosion during operation over seawater. Hot corrosion is observed in a multitude of high temperature components, such as gas turbines, power plants, refineries, fluidized bed combustion systems, pipelines, and industrial waste incinerators.

Hot corrosion experiments in the laboratory have been conducted under constant temperatures of interest, while in the actual working conditions of coal-fired power plants, boiler tubes are cooled down via water cooling from a relatively high fireside temperature, e.g., 1000°C. To investigate …


Direct Ink Writing Printability – Ashby-Like Plots For Guided Design, Domenic Cipollone Jan 2022

Direct Ink Writing Printability – Ashby-Like Plots For Guided Design, Domenic Cipollone

Graduate Theses, Dissertations, and Problem Reports

Direct Ink Writing (DIW), an extrusion-based 3D printing technique, offers a broad application space. As such, the technique continues to find use in biomedical, flexible electronic, ceramic, and energy device applications, among others. With this broad application space comes an expanding material library of inks with diverse rheological and microstructural properties. This begs the question: what constitutes a printable ink? How does one define printability? And how does one design for printability?

Researchers currently have a broad understanding of what constitutes a printable ink. However, time and time again, inks with unique rheological properties and formulations are printed. Currently, ink …


Thermochemical Water-Splitting Using Novel High-Entropy Perovskite Oxides, Hector Alexis De Santiago Hernandez Jan 2022

Thermochemical Water-Splitting Using Novel High-Entropy Perovskite Oxides, Hector Alexis De Santiago Hernandez

Graduate Theses, Dissertations, and Problem Reports

In this project, we designed, synthesized, and tested the transformative (La0.8Sr0.2)(Mn[1-x]/3Fe[1-x]/3CoxAl[1-x]/3)O3 (0 ≤ x ≤ 1.0) high-entropy perovskite oxides (HEPOs) as redox active oxygen carriers for thermochemical hydrogen production with improved stability, kinetics, and H2 yield. The developed HEPOs form an R3c (hexagonal) phase and were successfully synthesized using both the Pechini and solid-state reactions with the latter synthesis being the primary source for testing. These innovative perovskites demonstrated an improved kinetics with oxygen surface exchange coefficient, k, greater than 7.5 x 10-4 cm/s, …


Controlling The Thermal And Electrical Properties Of Camno3-Δ Based Perovskite Ceramics, Sergio Andres Paredes Navia Jan 2022

Controlling The Thermal And Electrical Properties Of Camno3-Δ Based Perovskite Ceramics, Sergio Andres Paredes Navia

Graduate Theses, Dissertations, and Problem Reports

Most of the energy lost during the conversion process comes in the form of waste heat. The world's energy consumption loses over 60% of its energy after conversion. In order to increase the efficiency of the conversion process, it is essential to harness waste heat and reutilize this energy resource. Heat recovery technology as thermoelectric (TE) technology is one of the growing alternatives to harvest excessive amounts of energy lost as waste heat for a more efficient, safe, and sustainable future. Due to the Seebeck effect, TE materials have the potential to convert waste heat directly into electricity, improving efficiency …


Influence Of Saturation Nonequilibrium And Variable Operation Conditions On The Electromechanical Performance Of Ionic Polymer Metal Composite Actuator Architectures, Allison Maria Arnold Jan 2022

Influence Of Saturation Nonequilibrium And Variable Operation Conditions On The Electromechanical Performance Of Ionic Polymer Metal Composite Actuator Architectures, Allison Maria Arnold

Graduate Theses, Dissertations, and Problem Reports

Electroactive polymers (EAPs) continue to gain attention for their potential to offer unique and versatile solutions in the soft robotic and flexible electronic industries. Ionic Polymer-Metal Composites (IPMCs) are a class of ionic-type EAPs which can be configured as capacitor actuators with very low voltage requirements (≤ 5 V AC or DC). Their compact, portable, and lightweight properties, coupled with a biomimetic bending actuation response make them ideal for human-machine integrated technologies such as medical implants, active skins, and artificial muscles. The Nafion-based IPMC can be described as a layered composite capacitor containing an ionic polymer core, sandwiched between chemically …


Functionally Magnetic Gradient Copper-Nickel Material Fabricated Via Directed Energy Deposition, Vy Tran Phuong Nguyen Jan 2022

Functionally Magnetic Gradient Copper-Nickel Material Fabricated Via Directed Energy Deposition, Vy Tran Phuong Nguyen

Graduate Theses, Dissertations, and Problem Reports

Functionally gradient materials (FGMs) of CuSn10 and Inconel 718 were fabricated via a hybrid directed energy deposition (DED) system. The objective of the present thesis is to determine the feasibility of manufacturing CuSn10 and Inconel 718 FGMs via DED and investigate the physical and mechanical properties and the microstructures of the resulting FGMs. The physical tests comprised of conductivity and Seebeck coefficient measurements. The microstructure analysis and mechanical testing include microscopic imaging, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and hardness test. In addition, compressive strength test was performed to analyze the interface bonding behaviors.


Carbon Monoxide Sensing Of Nickel Oxide At 1000 ℃ To 1200 ℃ For In Situ Combustion Control: Behavior, Mechanism, And Application, Yi Wang Jan 2022

Carbon Monoxide Sensing Of Nickel Oxide At 1000 ℃ To 1200 ℃ For In Situ Combustion Control: Behavior, Mechanism, And Application, Yi Wang

Graduate Theses, Dissertations, and Problem Reports

An advanced smart sensor network is essential to a combustion system, which is in favor of in situ, locally placed, and low-cost gas sensors. However, most chemical/electrochemical sensors fail to work in a combustion boiler, due to the demanding working temperatures (> 1000 ℃). This work for the first time reports a well-functioning mixed-potential type CO sensor at 1000 ℃ - 1200 ℃ using nickel oxide (NiO) as the sensing material. The influence of feed gas flow rate, electrode thickness, and porosity on sensor behavior is investigated, delivering notable and fast responses to 1000 ppm in 3% O2: …


Modeling, Fabrication, And Characterization Of Rf-Based Passive Wireless Sensors Composed Of Refractory Semiconducting Ceramics For High Temperature Applications, Kavin Sivaneri Varadharajan Idhaiam Jan 2022

Modeling, Fabrication, And Characterization Of Rf-Based Passive Wireless Sensors Composed Of Refractory Semiconducting Ceramics For High Temperature Applications, Kavin Sivaneri Varadharajan Idhaiam

Graduate Theses, Dissertations, and Problem Reports

Real-time health monitoring of high temperature systems (>500oC) in harsh environments is necessary to prevent catastrophic events caused by structural failures, varying pressure, and chemical reactions. Conventional solid-state temperature sensors such as resistance temperature detectors (RTDs) and thermocouples are restricted by their operating environments, sensor dimensions and often require external power sources for their operation. The current work presents the research and development of RF-based passive wireless sensing technology targeting high temperatures and harsh environmental conditions. Passive wireless devices are generally classified as near-field and far-field devices based on the interrogation distance. Near-field sensors are placed at …


Combinatorial Approaches For Effective Design, Synthesis, And Optimization Of Enzyme-Based Conjugates, Jordan Scott Chapman Jan 2022

Combinatorial Approaches For Effective Design, Synthesis, And Optimization Of Enzyme-Based Conjugates, Jordan Scott Chapman

Graduate Theses, Dissertations, and Problem Reports

The specificity and efficiency with which enzymes catalyze selective chemical reactions far exceeds the performance of traditional heterogeneous catalysts that are predominant in industrial applications such as conversion of commodity chemicals to value-added products, fuel cells, and petroleum refinement. Moreover, biocatalysts exhibit exceptionally high product turnover at ambient conditions with little health and environmental burden. These advantageous qualities have led to the prolific use of enzyme catalysis in pharmaceutical, detergents, and food preservation industries wherein their use has greatly reduced waste generation, Unfortunately, the full slate of benefits that enzymes can impart to a broader range of chemical processes is …


Theoretical Investigation Of Sofc/Soec Degradation Mechanisms And Mitigations, Fuming Jiang Jan 2022

Theoretical Investigation Of Sofc/Soec Degradation Mechanisms And Mitigations, Fuming Jiang

Graduate Theses, Dissertations, and Problem Reports

America has a rapid growth in the development of renewable power generation in the twenty-first century. Hydrogen energy especially is the major topic in development of renewable power generation because it has the ability to provide for energy in transportation, combined heat and power generation and energy storage systems with little or no impact on the global ecosystem. Electrolysis and fuel cell technology for hydrogen energy storage has brought interest to the researchers worldwide.

Solid oxide electrolysis cells (SOECs) and Solid oxide fuel cells (SOFCs) are promising hydrogen energy technologies that can utilize chemical energy to produce and store electricity. …


Microwave-Assisted Carbon Nanotube Growth From Methane On Surface Catalyst Exsolving Perovskite Oxide, Angela M. Deibel Jan 2022

Microwave-Assisted Carbon Nanotube Growth From Methane On Surface Catalyst Exsolving Perovskite Oxide, Angela M. Deibel

Graduate Theses, Dissertations, and Problem Reports

The novel method of using a perovskite exsolution catalyst, strontium titanium nickel oxide (STNO), proved capable of simultaneously producing carbon nanotubes (CNTs) and COx-free hydrogen during methane decomposition under microwave irradiation. An optimization of common perovskite materials was conducted for microwave-responsiveness with the results reported in this study. Out of the materials screened, strontium titanium nickel oxide (STNO) was the best candidate to achieve an acceptable methane conversion rate as well as a decent responsiveness to microwave. STNO was further optimized through Ni content, reduction dwell time, and reduction temperature to produce the best methane conversion and CNT …


Calcite Depression In Bastnaesite-Calcite Flotation System Using Organic Acids, Emmy Muhoza Jan 2022

Calcite Depression In Bastnaesite-Calcite Flotation System Using Organic Acids, Emmy Muhoza

Graduate Theses, Dissertations, and Problem Reports

Bastnaesite is the primary source of light REEs, namely cerium (Ce), lanthanum (La), praseodymium (Pr), neodymium (Nd), to name a few. Bastnaesite is typically concentrated using the froth flotation beneficiation method. Flotation of bastnaesite suffers from high reagent consumption due to the similar surface characteristics of bastnaesite and associated gangue minerals, including calcite. Additionally, complex stages of high-temperature conditioning are often required to suppress the detrimental impact of dissolved calcium ions on the flotation of bastnaesite. This research seeks to investigate the capabilities of organic acids in the bastnaesite-calcite flotation systems to selectively depress calcite minerals and effectively chelate calcium …


Development Of Oxide Dispersion Strengthening (Ods) Alloys Powder For Additive Manufacturing, Changyu Ma Jan 2022

Development Of Oxide Dispersion Strengthening (Ods) Alloys Powder For Additive Manufacturing, Changyu Ma

Graduate Theses, Dissertations, and Problem Reports

Additive manufacturing (AM) fabricated oxide dispersion strengthened (ODS) alloys are given high expectations for critical structural components such as the first stage turbine blade for their excellent creep strength and oxidation resistance compared to superalloys. However, the powder feedstock processing is still an open question since current state-of-the-art processes are not capable of achieving ultrafine strengthening elements such as Y2O3 in powder which leads to agglomeration issues in as-consolidated alloys. In this research, the oxidation behavior and stability of ultrafine oxide in AM-printed alloys using mechanically alloyed powders were evaluated at 1100 oC. In addition, a …


Developments Of Advanced Cathodes And Stabilized Zinc Anodes For High-Performance Aqueous Zinc-Ion Batteries, Xiujuan Chen Jan 2021

Developments Of Advanced Cathodes And Stabilized Zinc Anodes For High-Performance Aqueous Zinc-Ion Batteries, Xiujuan Chen

Graduate Theses, Dissertations, and Problem Reports

Aqueous rechargeable zinc-ion batteries (ZIBs) have attracted considerable attention as one of the most promising energy storage systems for the grid-scale application owing to the natural merits of metallic Zn, including a high theoretical capacity, suitable redox potential, low cost, high safety, and eco-friendliness. However, the existing aqueous ZIBs are far from satisfying the requirements of practical applications. Significant challenges hindering the further development of ZIBs come from the low utilization and poor cycling stability of cathodes and limited reversibility of Zn anodes associated with dendrite growth, corrosion, and passivation. To date, enormous efforts have been devoted to developing high-performance …


Dry Reforming Of Methane Using Microwave Irradiated Metal Oxide/Coal Char Catalysts, Anthony Carter Jan 2021

Dry Reforming Of Methane Using Microwave Irradiated Metal Oxide/Coal Char Catalysts, Anthony Carter

Graduate Theses, Dissertations, and Problem Reports

This research focuses on the synthesis of both shaped and amorphous powder materials, the combination of these materials with dried Powder River Basin (PRB) coal char, and their reactionary properties with methane and carbon dioxide gasses with conventional and microwave (MW) heating. The first goal of this project was to synthesize shaped micro and nano sized particles with ideal dielectric properties for converting electromagnetic energy into heat and proven capabilities of activating methane. These particles were synthesized via solvothermal, hydrothermal, and co-preceptory treatments alone and onto the surface of dried PRB coal char. PRB is a sub-bituminous, low-ranking coal (LRC) …


Static And Dynamic Analysis Of Composite Plates Using The Monna Finite Element, Mohamed Omar Jan 2021

Static And Dynamic Analysis Of Composite Plates Using The Monna Finite Element, Mohamed Omar

Graduate Theses, Dissertations, and Problem Reports

Composite materials are replacing metals in many fields due to their favorable qualities such as strength-to-weight ratio, fatigue characteristics, and corrosion resistance. An efficient, versatile, and accurate composite plate element applicable to the dynamic analysis of composite plates would help the advancement of composites tremendously.

The objective of this research is to analyze composite plates using the classical laminated plate theory (CLPT), first-order deformation theory (FSDT), and higher-order deformation theory (HSDT) with the applicable finite element modeling (FEM) for each theory. This thesis investigates which theory is more efficient and accurate and evaluates the benefits of using an h-p-version …


Timber Bridge Pile Splicing With Fiber Reinforced Polymer Wraps, Drew L. Damich Jan 2021

Timber Bridge Pile Splicing With Fiber Reinforced Polymer Wraps, Drew L. Damich

Graduate Theses, Dissertations, and Problem Reports

Timber pile repair using splicing is widely used but little research has been done to determine their strength capacity after repair using this method. Current timber pile splicing mechanisms utilize various steel or wooden components. Fiber Reinforced Polymer (FRP) wraps can be utilized as replacement to conventional materials in splicing of timber piles. This study evaluated the strength capacities of traditional splicing mechanisms in relation to FRP wrap splice mechanisms. Traditional splicing mechanisms consisted of flat steel plate, C-channel steel plate, and wooden plate splices. The FRP wrap splice consisted of unidirectional glass/epoxy composite with three layers of fabric as …


Recovery Of Phosphorus From Florida Phosphatic Waste Clay, Amir Eskanlou Jan 2021

Recovery Of Phosphorus From Florida Phosphatic Waste Clay, Amir Eskanlou

Graduate Theses, Dissertations, and Problem Reports

This MS thesis examines the recovery of phosphorus (P) from Florida waste clay (WC). A comprehensive literature review revealed that: (i)-The most important values being lost to WC are P and rare earth elements (REEs). For the recovery of these values from WC, two crucial attempts are the removal of extremely fine-sized clays, followed by the recovery of phosphate content, which can pave the path for the recovery of REEs; (ii)-Any scientific/ technological solution should, at the same time, be economically and environmentally attractive to the industry. As such, moving from mostly chemical separation processes to the primarily physical/ physicochemical …


Valorization Of Xylan In Agroforestry Waste Streams, Harrison Appiah Jan 2021

Valorization Of Xylan In Agroforestry Waste Streams, Harrison Appiah

Graduate Theses, Dissertations, and Problem Reports

Valorization of Xylan in Agroforestry Waste Streams.

Harrison Appiah

Microwave-assisted deep eutectic solvent and gamma-valerolactone metallic chloride catalyzed conversion of xylan to furfural were investigated using a 2x3 factorial experimental design at two levels of percent microwave power, reaction time, and catalyst concentration. The levels of each factor studied were (20%, 60% microwave power, 2, 4 minutes, and 10, 20mg) respectively. The effect of three metallic chloride catalysts (LiCl, FeCl3.6H20, CuCl2) on the conversion of xylan to furfural was also investigated. The gamma-valerolactone-ferric chloride sent system exhibited the highest mean yield of furfural (56.50%). The next highest furfural yield of …


Increasing The Seebeck Coefficient Of Thermoelectric Calcium Cobaltite Ceramics Through Incorporation Of Rare-Earth Elements, Andre Fabian Fernandes Jan 2021

Increasing The Seebeck Coefficient Of Thermoelectric Calcium Cobaltite Ceramics Through Incorporation Of Rare-Earth Elements, Andre Fabian Fernandes

Graduate Theses, Dissertations, and Problem Reports

The demand for alternative sources of energy continues to grow, so it is essential to look for alternatives that are environmentally sustainable to minimize the environmental impact of energy generation. Projections suggest that renewables have the potential to make up over fifty percent of power generation by 2035. Studies have shown that in 2020 more than 62% of the energy produced in the US was lost, with most of this energy being in the form of waste heat. Waste heat can be utilized to improve the efficiency of power production or even power other devices. This waste heat can be …


Metal Supported Solid Oxide Fuel Cell Using Proton Conducting Electrolyte For Direct Ammonia Utilization, Edwin Vega Hiraldo Jan 2021

Metal Supported Solid Oxide Fuel Cell Using Proton Conducting Electrolyte For Direct Ammonia Utilization, Edwin Vega Hiraldo

Graduate Theses, Dissertations, and Problem Reports

Transportation represents about 27% of global warming greenhouse gas emissions nowadays. To reduce these emissions, fuel cell electric vehicles have been poised to be a new trend to provide zero-emission transportation. Among them, solid oxide fuel cells (SOFCs) offer efficient, clean energy, especially when powered by carbon-free fuel, such as ammonia. To enable onboard ammonia-fed SOFCs, a metal-supported, proton-conducting SOFC is investigated in this study. The metal support would provide physical robustness for thermal shock during vehicles’ quick start-up and shutdown, reduce internal temperature gradients due to the greater thermal conductivity of the metal, and enable conventional metal joining for …