Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Materials Science and Engineering

Timber Bridge Pile Splicing With Fiber Reinforced Polymer Wraps, Drew L. Damich Jan 2021

Timber Bridge Pile Splicing With Fiber Reinforced Polymer Wraps, Drew L. Damich

Graduate Theses, Dissertations, and Problem Reports

Timber pile repair using splicing is widely used but little research has been done to determine their strength capacity after repair using this method. Current timber pile splicing mechanisms utilize various steel or wooden components. Fiber Reinforced Polymer (FRP) wraps can be utilized as replacement to conventional materials in splicing of timber piles. This study evaluated the strength capacities of traditional splicing mechanisms in relation to FRP wrap splice mechanisms. Traditional splicing mechanisms consisted of flat steel plate, C-channel steel plate, and wooden plate splices. The FRP wrap splice consisted of unidirectional glass/epoxy composite with three layers of fabric as …


Bending Response Of Timber Mortise And Tenon Joints Reinforced With Filler-Modules And Frp Gussets, Andrew Robert Pacifico Jan 2019

Bending Response Of Timber Mortise And Tenon Joints Reinforced With Filler-Modules And Frp Gussets, Andrew Robert Pacifico

Graduate Theses, Dissertations, and Problem Reports

In 2013, the California Bay Area (CBA) passed a set of ordinances to ensure that their 10,000 plus timber soft-story buildings were prepared for seismic events, through nondestructive evaluation methods. Many property owners are searching for an affordable retrofitting system that will also meet CBA’s new laws focusing on installations by the mandated deadlines in 2020. Over the past three to four decades, Fiber Reinforced Polymer (FRP) composites have found their way into the civil infrastructure sector for rehabilitation. The objective of this study is to evaluate the bending behavior retrofitted mortise and tenon timber joints reinforced with engineered wood …


Detection Of Buried Non-Metallic (Plastic And Frp Composite) Pipes Using Gpr And Irt, Jonas Kavi Jan 2018

Detection Of Buried Non-Metallic (Plastic And Frp Composite) Pipes Using Gpr And Irt, Jonas Kavi

Graduate Theses, Dissertations, and Problem Reports

This research investigated alternative strategies for making buried non-metallic pipes (CFRP, GFRP, and PVC) easily locatable using Ground Penetrating Radar (GPR). Pipe diameters up to 12" and buried with up to 4 ft. of soil cover were investigated. The findings of this study will help address the detection problem of non-metallic pipelines and speed the adoption of composite pipes by the petroleum and natural gas industry. The research also investigated the possibility of locating buried pipes transporting hot fluids using Infrared Thermography (IRT).

Results from the study have shown that, using carbon fabric and aluminum tape overlay on non‑metallic pipes …