Open Access. Powered by Scholars. Published by Universities.®

Mechanics of Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Structures and Materials

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 31 - 55 of 55

Full-Text Articles in Mechanics of Materials

Crack Nucleation In A Peridynamic Solid, S. Silling, O. Weckner, E. Askari, Florin Bobaru Jul 2013

Crack Nucleation In A Peridynamic Solid, S. Silling, O. Weckner, E. Askari, Florin Bobaru

Florin Bobaru Ph.D.

A condition for the emergence of a discontinuity in an elastic peridynamic body is proposed, resulting in a material stability condition for crack nucleation. The condition is derived by determining whether a small discontinuity in displacement, superposed on a possibly large deformation, grows over time. Stability is shown to be determined by the sign of the eigenvalues of a tensor field that depends only on the linearized material properties. This condition for nucleation of a discontinuity in displacement can be interpreted in terms of the dynamic stability of plane waves with very short wavelength. A numerical example illustrates that cracks …


Studies Of Dynamic Crack Propagation And Crack Branching With Peridynamics, Youn Doh Ha Ph.D., Florin Bobaru Ph.D. Jul 2013

Studies Of Dynamic Crack Propagation And Crack Branching With Peridynamics, Youn Doh Ha Ph.D., Florin Bobaru Ph.D.

Florin Bobaru Ph.D.

In this paper we discuss the peridynamic analysis of dynamic crack branching in brittle materials and show results of convergence studies under uniform grid refinement (m-convergence) and under decreasing the peridynamic horizon (δ-convergence). Comparisons with experimentally obtained values are made for the crack-tip propagation speed with three different peridynamic horizons.We also analyze the influence of the particular shape of themicro-modulus function and of different materials (Duran 50 glass and soda-lime glass) on the crack propagation behavior. We show that the peridynamic solution for this problem captures all the main features, observed experimentally, of dynamic crack propagation and branching, as well …


Fatigue Testing And Data Analysis Of Welded Steel Cruciform Joints, Alina Shrestha May 2013

Fatigue Testing And Data Analysis Of Welded Steel Cruciform Joints, Alina Shrestha

University of New Orleans Theses and Dissertations

In this study, ABS Publication 115, “Guidance on Fatigue Assessment of Offshore Structures” is briefly reviewed. Emphasis is on the S-N curves based fatigue assessment approach of non-tubular joints, and both size and environment effects are also considered. Further, fatigue tests are performed to study the fatigue strength of load-carrying and non-load-carrying steel cruciform joints that represent typical joint types in marine structures. The experimental results are then compared against ABS fatigue assessment methods, based on nominal stress approach, which demonstrates a need for better fatigue evaluation parameter. A good fatigue parameter by definition should be consistent and should correlate …


Elastic–Plastic Analysis And Strength Evaluation Of Adhesive Joints In Wind Turbine Blades, Yi Hua, Ananth Ram Mahanth Kasavajhala, Linxia Gu Jan 2013

Elastic–Plastic Analysis And Strength Evaluation Of Adhesive Joints In Wind Turbine Blades, Yi Hua, Ananth Ram Mahanth Kasavajhala, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

The objective of this paper is to investigate the performance of adhesive joints of carbon/epoxy wind turbine blade subjected to combined bending and tension loadings through finite element method. The influence of adhesive material properties and geometrical details including fillet and imperfections was examined in terms of interlaminar stresses in the adhesive layer. The variation of stress intensity with change in adhesive shear modulus has also been investigated, while contour integral method was used for evaluating the stress intensity factors (SIF) at the imperfection tip. Furthermore, the strength of the joint was assessed through the crack initiation and propagation analysis. …


A Resistance Based Structural Health Monitoring System For Composite Structure Applications, Dennis N. Boettcher Aug 2012

A Resistance Based Structural Health Monitoring System For Composite Structure Applications, Dennis N. Boettcher

Master's Theses

This research effort explored the possibility of using interwoven conductive and nonconductive fibers in a composite laminate for structural health monitoring (SHM). Traditional SHM systems utilize fiber optics, piezoelectrics, or detect defects by nondestructive test methods by use of sonar graphs or x-rays. However, these approaches are often expensive, time consuming and complicated.

The primary objective of this research was to apply a resistance based method of structural health monitoring to a composite structure to determine structural integrity and presence of defects.

The conductive properties of fiber such as carbon, copper, or constantan - a copper-nickel alloy - can be …


Peridynamic Model For Dynamic Fracture In Unidirectional Fiber-Reinforced Composites, Wenke Hu, Youn Doh Ha, Florin Bobaru Apr 2012

Peridynamic Model For Dynamic Fracture In Unidirectional Fiber-Reinforced Composites, Wenke Hu, Youn Doh Ha, Florin Bobaru

Department of Mechanical and Materials Engineering: Faculty Publications

We propose a computational method for a homogenized peridynamics description of fiber-reinforced composites and we use it to simulate dynamic brittle fracture and damage in these materials. With this model we analyze the dynamic effects induced by different types of dynamic loading on the fracture and damage behavior of unidirectional fiber-reinforced composites. In contrast to the results expected from quasi-static loading, the simulations show that dynamic conditions can lead to co-existence of and transitions between fracture modes; matrix shattering can happen before a splitting crack propagates. We observe matrix–fiber splitting fracture, matrix cracking, and crack migration in the matrix, including …


The Effects Of Damage Arrestment Devices In Composite Plate Sandwiches With Fastener Holes, Mark Anderson, Nancy Hung Choy, Lacey Jones, Rita Kourskaya Jun 2011

The Effects Of Damage Arrestment Devices In Composite Plate Sandwiches With Fastener Holes, Mark Anderson, Nancy Hung Choy, Lacey Jones, Rita Kourskaya

Aerospace Engineering

Composite materials such as a carbon fiber are used in a variety of new technologies including aircraft, spacecraft, and motor vehicles. Carbon fiber has a high strength to weight ratio, a key advantage over other material options. This report discusses the use of composite damage arrestment devices (DADs) in composite sandwich panels with a foam core. There are three different curing cycles tested for the DADs: pressure only, vacuum only, and vacuum with 1000 lbs of pressure. Using a Tetrahedron Heat Press to cure the composite specimen and an Instron Machine to perform tensile testing, data was collected for each …


Design, Fabrication, Structural Testing, And Numerical Analysis Of A Small Scale Composite Wing, Jacob David Gaunt, Juan Carlos Flores, Vincent Andrew Perry Jun 2010

Design, Fabrication, Structural Testing, And Numerical Analysis Of A Small Scale Composite Wing, Jacob David Gaunt, Juan Carlos Flores, Vincent Andrew Perry

Aerospace Engineering

A small scale composite wing based on a design found on an experimental aircraft was designed, constructed, and tested dynamically and statically. The wing was constructed similarly to an experimental aircraft wing. The performed static test was intended to produce pure bending. Strain gages were used to measure strains on the wing structure. The strains were converted to stresses to aid in analysis. The static test results suggested that the wing was actually under torsion. Four structural modes were found from the static test. A finite element analysis model was made to compare experimental results to numerical analytical results. The …


Studies Of Dynamic Crack Propagation And Crack Branching With Peridynamics, Youn Doh Ha Ph.D., Florin Bobaru Ph.D. Jan 2010

Studies Of Dynamic Crack Propagation And Crack Branching With Peridynamics, Youn Doh Ha Ph.D., Florin Bobaru Ph.D.

Department of Engineering Mechanics: Faculty Publications

In this paper we discuss the peridynamic analysis of dynamic crack branching in brittle materials and show results of convergence studies under uniform grid refinement (m-convergence) and under decreasing the peridynamic horizon (δ-convergence). Comparisons with experimentally obtained values are made for the crack-tip propagation speed with three different peridynamic horizons.We also analyze the influence of the particular shape of themicro-modulus function and of different materials (Duran 50 glass and soda-lime glass) on the crack propagation behavior. We show that the peridynamic solution for this problem captures all the main features, observed experimentally, of dynamic crack propagation and branching, as well …


Multiscale Transformation Field Analysis Of Progressive Damage In Fibrous Laminates, Yehia Bahei-El-Din, Ritesh Khire, Prabhat Hajela Jan 2010

Multiscale Transformation Field Analysis Of Progressive Damage In Fibrous Laminates, Yehia Bahei-El-Din, Ritesh Khire, Prabhat Hajela

Centre for Advanced Materials

As part of an ongoing effort to model uncertainty propagation across multiple scales in fibrous laminates, this paper presents a deterministic transformation field analysis for modeling damage progression under membrane forces and bending moments. In this approach, equivalent eigenstresses are computed in the phases and/or plies such that their respective stress components that satisfy the underlying failure criteria are reduced to zero. Superposition of the solutions found for the undamaged laminate under applied loads and under the eigenstress field provide the entire response. Failure criteria are based on stress averages in the fiber and matrix. Damage mechanisms considered are frictional …


Modified Sandwich Structures For Improved Impact Resistance Of Wind Turbine Blades, Yehia Bahei-El-Din, Mostafa Shazly, I. El-Habbal, Y. Elbahy Jan 2010

Modified Sandwich Structures For Improved Impact Resistance Of Wind Turbine Blades, Yehia Bahei-El-Din, Mostafa Shazly, I. El-Habbal, Y. Elbahy

Centre for Advanced Materials

Wind turbine blades are susceptible to damage due to fatigue as well as impact by flying objects and parts broken off failed blades of nearby wind towers. Localized, permanent compression of the foam core and delamination of the fibrous composite face sheets are typical damage modes and can lead to progressive structural failure. Sandwich structures modified by inclusion of flexible polyurethane (PU) layers within the cross section are examined under both impact and dynamic loads. Finite element models of sandwich structures with conventional and modified designs show that sandwich designs modified with PU interlayes exhibit reduced foam core crushing and …


Multiscale Modeling Of Impact On Heterogeneous Viscoelastic Solids With Evolving Microcracks, Flavio V. Souza Apr 2009

Multiscale Modeling Of Impact On Heterogeneous Viscoelastic Solids With Evolving Microcracks, Flavio V. Souza

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

Multiscale computational techniques play a major role in solving problems related to viscoelastic composite materials due to the complexities inherent to these materials. In the present work, a numerical procedure for multiscale modeling of impact on heterogeneous viscoelastic solids containing evolving microcracks is proposed in which the (global scale) homogenized viscoelastic incremental constitutive equations have the same form as the local scale viscoelastic incremental constitutive equations, but the homogenized tangent constitutive tensor and the homogenized incremental history dependent stress tensor depend on the amount of damage accumulated at the local scale. Furthermore, the developed technique allows the computation of the …


Effect Of Steam Environment On Creep Behavior Of Nextel720/Alumina-Mullite Ceramic Matrix Composite At Elevated Temperature, Tolga Kutsal Mar 2009

Effect Of Steam Environment On Creep Behavior Of Nextel720/Alumina-Mullite Ceramic Matrix Composite At Elevated Temperature, Tolga Kutsal

Theses and Dissertations

The tensile creep behavior of an oxide-oxide ceramic matrix composite (CMC) was investigated at 1000 and 1100° C in laboratory air and steam. The oxide-oxide CMC studied in this research was Nextel™ 720/alumina-mullite (N720/AM). The composite consists of N720/fibers with 0°/90° fiber orientation and a porous alumina-mullite matrix. Tensile-strain behavior was investigated and tensile properties measured at 900, 1000 and 1100° C. The effect of loading rate on tensile properties of N720/AM ceramic matrix composite at 1100° C in steam was also examined. Creep-rupture tests were performed at 1100° C in laboratory air and steam, and at 1000° C only …


Effect Of A Variable Contact Load On Fretting Fatigue Behavior Of Ti-6al-4v, Andrew J. Jutte Mar 2004

Effect Of A Variable Contact Load On Fretting Fatigue Behavior Of Ti-6al-4v, Andrew J. Jutte

Theses and Dissertations

Effects of a variable contact load on the high cycle fretting fatigue behavior of Ti-6AL-4V were investigated. Experimental tests were performed using a new test setup capable of applying a contact load varying in amplitude, frequency, and phase and independently measuring shear forces on opposite sides of a specimen. Finite element analysis (FEA) of experimental and idealized loading conditions was performed and local mechanistic parameters and the Modified Shear Stress Range (MSSR) fatigue parameter were determined. Correlations between contact width, slip amplitude, fatigue life and a variable contact load were established with variable contact loading shown to have a damaging …


Experimental And Computational Failure Analysis Of Graphite/Bismaleimide Laminated Composite And Carbon Foam In Sandwich Construction, Troy C. Welker Mar 2003

Experimental And Computational Failure Analysis Of Graphite/Bismaleimide Laminated Composite And Carbon Foam In Sandwich Construction, Troy C. Welker

Theses and Dissertations

Sandwich beams consisting of a carbon foam core and graphite/bismaleimide face sheets were constructed and tested. Nine specimens were fabricated using three distinct cross-ply symmetric face sheet layups with a constant core thickness. Four-point bend testing controlled by a constant rate of midspan vertical displacement was used to load the specimens to failure. Displacements and strains from the experiment were compared to analytical sandwich beam theory and displacements and failure loads were compared to a layerwise finite element solution. A phenomenological failure criterion was developed that compares favorably with experimental failure data. The finite element solution gives failure within an …


A Time-Resolved Method For Nonlinear Ultrasonic Measurements, Stephen D. Holland, Wolfgang Sachse Sep 2001

A Time-Resolved Method For Nonlinear Ultrasonic Measurements, Stephen D. Holland, Wolfgang Sachse

Stephen D. Holland

We describe a time-resolved method for measuring nonlinear ultrasonic phenomena. Current approaches rely on a narrowband measurement of harmonic generation to identify and characterize nonlinearity. Concomitant with these techniques is poor time resolution. We address this limitation with a hybrid narrowband/broadband approach that provides simultaneous time resolution and harmonic isolation for the measurement of weak nonlinearites. We discuss applications and present demonstrative results showing harmonic generation both in water and at a dry contact aluminum-aluminum interface.


The Development Of A Finite Element Program To Model High Cycle Fatigue In Isotropic Plates, William C. Shipman Mar 2001

The Development Of A Finite Element Program To Model High Cycle Fatigue In Isotropic Plates, William C. Shipman

Theses and Dissertations

As part of a joint AFRL/DAGSI turbine blade research effort, a computer program has been developed that uses a von Karman large-deflection two-dimensional finite element approximation to determine stress levels and patterns in isotropic thin plates. The dynamic loading of various plates has been carried out in order to model a high cycle fatigue situation. The research considered the various effects of mode shapes, resident frequency, non-linear cyclic effect, endurance limits, and stress variations within a high cycle fatigue environment. Two main initiatives were taken. First, a transient analysis tool was developed that calculates stress and displacement patterns over a …


Determination Of Plate Source, Detector Separation From One Signal, Stephen D. Holland, Tadej Kosel, Richard Weaver, Wolfgang Sachse Nov 1999

Determination Of Plate Source, Detector Separation From One Signal, Stephen D. Holland, Tadej Kosel, Richard Weaver, Wolfgang Sachse

Stephen D. Holland

We address the problem of locating a transient source, such as an acoustic emission source, in a plate. We apply time-frequency analysis to the signals detected at a receiver. These highly dispersive and complex waveforms are measured for source-receiver separations ranging from 40 to 180 plate thicknesses and at frequencies such that ten to twenty Rayleigh-Lamb branches are included. Re-assigned, smoothed, pseudo-Wigner-Ville distributions are generated that exhibit the expected sharp ridges in the time-frequency plane, lying along the predicted frequency-time-of-arrival relations. The source-receiver separation can be determined from such plots.


Fiber Volume Fraction Effects On Fatigue Response Of A Scs-6/Ti-15-3 Metal Matrix Composite At Elevated Temperature, Sean C. Coghlan Sep 1997

Fiber Volume Fraction Effects On Fatigue Response Of A Scs-6/Ti-15-3 Metal Matrix Composite At Elevated Temperature, Sean C. Coghlan

Theses and Dissertations

The purpose of this study was to determine the effects of fiber volume fraction on the fatigue behavior of Silicon Carbide fiber-reinforced Titanium alloy, SCS-6/Ti-15-3. Three fiber volume fractions were investigated; 15%, 25%, and 42%. The tests were performed under fully-reversed, strain-controlled conditions at 427 °C. The primary objectives of this study were to develop a fatigue life diagram and to document the damage and failure mechanisms. Compressive loads on the slender specimens were kept from buckling the specimens through the use of a buckling guide. This device allows unrestricted axial movement of the composite, while preventing any out-of-plane motion. …


Residual Strength After Fatigue Of Unidirectional And Cross-Ply Metal Matrix Composites At Elevated Temperature, Sen-Tzer Chiou Jun 1996

Residual Strength After Fatigue Of Unidirectional And Cross-Ply Metal Matrix Composites At Elevated Temperature, Sen-Tzer Chiou

Theses and Dissertations

This study investigated the residual strength of the unidirectional and cross-ply laminates of SCS-6 / Ti-15-3, metal matrix composite at elevated temperature 427°C (800°F) after under tension-tension load controlled mode. For this purpose, several specimens were fatigued to various fractions of the fatigue life and then loaded monotonically to failure. The purpose of this study was to determine the effects of different levels of fatigue damage on the composite's strength. The unidirectional specimens were cycled at a 900 MPa maximum stress at a frequency of 10 Hz, while, the cross-ply specimens were tested at both 300 MPa and 450 MPa …


Modeling Of Progressive Damage In Fiber-Reinforced Ceramic Matrix Composites, James P. Solti Mar 1996

Modeling Of Progressive Damage In Fiber-Reinforced Ceramic Matrix Composites, James P. Solti

Theses and Dissertations

An analytic methodology is developed to model the response of fiber-reinforced ceramic matrix composites (CMOs) when subjected to monotonic and fatigue loadings. The analysis requires the formulation of (1) a micromechanics model which defines the laminate's geometry and constitutive relationship; (2) failure criteria which estimate the extent of microstructural damage, and, finally, (3) a means of analyzing frictional slip, fiber pull-out, interfacial wear and laminate failure. For the present study, the behavior of unidirectional and crossply CMOs is investigated using modified shear-lag theory in conjunction with a set of failure criteria with a minimum reliance on empirical data. The damage …


Fatigue Response Of Cracked Aluminum Panel With Partially Bonded Composite Patch, Jason J. Denney Dec 1995

Fatigue Response Of Cracked Aluminum Panel With Partially Bonded Composite Patch, Jason J. Denney

Theses and Dissertations

More and more aircraft, both commercial and military, are being called upon to fly well beyond their economic and structural service lives. Budget cuts and dwindling new aircraft development has forced the United States Air Force (USAF) to look toward more reliable structural repairs. One of these repair techniques, which was the subject of this study, is the repair of metallic aircraft structures using high strength composite materials. This study investigated the fatigue response of a precracked, 508x1 52x1 mm, 2024-T3 aluminum panel repaired with a partially bonded, unidirectional, three-ply boron/epoxy composite reinforcement with ply lengths of 68, 56 and …


Thermo-Mechanical Fatigue Behavior Of Cross-Ply Ceramic Matrix Composite Under Tension-Tension Loading, Dana G. Allen Dec 1995

Thermo-Mechanical Fatigue Behavior Of Cross-Ply Ceramic Matrix Composite Under Tension-Tension Loading, Dana G. Allen

Theses and Dissertations

The purpose of this study was to investigate the combined effect of cyclic temperature and loading on the fatigue life of a ceramic matrix composite with a cross ply lay-up. The material used in this study was a potassium borosilicate glass (BSG) doped magnesium aluminosilicate (MAS) cordierite matrix reinforced with Nicalon (silicon carbide, SiC) fibers in a [0/90]4s lay-up. Thermomechanical fatigue (TMF) tests were performed with a period of 180 seconds/cycle, or 0.00556 Hz, and a triangular wave-form. The temperature was cycled between 566°C and l093°C, and the stress levels varied between 60 MPa and 145 MPa. All tests …


Investigation Of Residual Strength And Fatigue Life Of Unstiffened Aluminum Panels With Multiple Site Damage, Mark C. Cherry Dec 1995

Investigation Of Residual Strength And Fatigue Life Of Unstiffened Aluminum Panels With Multiple Site Damage, Mark C. Cherry

Theses and Dissertations

Multiple Site Damage MSD is the occurrence of small fatigue cracks at several sites within aircraft structures. This is important since it may lower the residual strength and fatigue life of the structure beyond what can be predicted using the damage tolerance technique based on a single crack, currently in use to design aircraft structures. This study investigated the effects of MSD on unstiffined panels. MSD usually occurs at rivet holes, or other stress concentration locations within an aircraft structure. This study simulated rivet holes with MSD, by using holes of constant diameter with small cracks, evenly spaced across the …


Nonlinear Geometric And Material Behavior Of Composite Shells With Large Strains, Scott A. Schimmels Aug 1995

Nonlinear Geometric And Material Behavior Of Composite Shells With Large Strains, Scott A. Schimmels

Theses and Dissertations

A two-dimensional, geometrically and materially nonlinear shell theory applicable to arbitrary geometries described by orthogonal curvilinear coordinates and encompassing large displacements, moderate rotations for large strain situations has been developed. Additionally, the theory includes Jacobian transformation matrices, based upon displacement parameters, for the Cauchy - 2nd Piola-Kirchhoff stress-state and the Cauchy (Almansi) - Green strain-state transformations, and a layered material approach is included for the elastoplastic analysis to allow for variation of plasticity through-the-thickness. Doubly curved 20, 28, and 36 degree-of-freedom finite elements are defined based on specialization of the theory to spherical coordinates. The computer program includes algorithms for …