Open Access. Powered by Scholars. Published by Universities.®

Engineering Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering Mechanics

The Effects Of Laser Shock Peening On The Fatigue Life Of Additive Manufactured Alsi10mg, Jacob L. Biddlecom May 2023

The Effects Of Laser Shock Peening On The Fatigue Life Of Additive Manufactured Alsi10mg, Jacob L. Biddlecom

All Dissertations

Additive manufacturing (AM) is becoming a manufacturing process that is well established, even with all the resources and attention that has been brought to it, the field is still lacking some key understandings. Currently, there are certain aspects that are difficult to overcome. Some of the intrinsic obstacles include process-induced defects, such as porosity from lack of fusion and gaseous bubble entrapment, as well as complex thermal gradients. These defects can lead to altered material response especially when looking at the fatigue life. The fatigue behaviors of AM components can change from print to print as well as when compared …


Freespan Analysis For Subsea Pipeline Integrity Management Strategy, Nurul Hadi, Muhammad Helmi, Edo Cathaputra, Dedi Priadi, Donanta Dhaneswara Jan 2023

Freespan Analysis For Subsea Pipeline Integrity Management Strategy, Nurul Hadi, Muhammad Helmi, Edo Cathaputra, Dedi Priadi, Donanta Dhaneswara

Journal of Materials Exploration and Findings (JMEF)

Abstract. Over a rough seabed or on seabed subject to scour, freespans can occur when contact between a subsea pipeline and the seabed is lost over an acceptable distance. When this exceeds the allowable freespan length, design stresses can be exceeded, and a vortex induced vibration (VIV) response can be initiated, resulting in the risk of fatigue failure. If this is not predicted and controlled properly, it will affect pipeline integrity, leading to expensive rectification and intervention work. Freespan analysis consisted primarily of a screening check in which the as-found freespans from Remotely Operated Vehicle (ROV) or multibeam Side …


Development Of Multi-Axial Fatigue Retrofits For Lock Gate Components, Logan Verkamp May 2020

Development Of Multi-Axial Fatigue Retrofits For Lock Gate Components, Logan Verkamp

Graduate Theses and Dissertations

Lock gates are essential infrastructure components to the United State (US) supply chain. They create large cost savings and environmental benefits when compared with traditional methods of transport (freight and rail). Because of the large quantity of goods and dependence on these shipping chains, the US economy can be drastically affected by an unexpected gate closure. Unfortunately, many lock gates within the US have reached or exceeded their designed life. Due to the intensity of cyclic loads and the environment, fatigue cracks have become a prominent issue. Developed cracks near the pintle region (a joint which the gate rotates and …


Peridynamic Models For Fatigue And Fracture In Isotropic And In Polycrystalline Materials, Guanfeng Zhang May 2017

Peridynamic Models For Fatigue And Fracture In Isotropic And In Polycrystalline Materials, Guanfeng Zhang

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

To improve design and reliability, extensive efforts has been devoted to understanding damage and failure of materials and structures using numerical simulation, as a complement of theory and experiment. In this thesis, peridynamics is adopted to study fatigue and dynamic failure problems.

Fatigue is a major failure mode in engineering structures. Predicting fracture/failure under cyclic loading is a challenging problem. Classical model cannot directly be applied to problems with discontinuities. A peridynamic model is adopted in this work because of important advantages of peridynamics in allowing autonomous crack initiation and propagation. A recently proposed peridynamic fatigue crack model is considered …


Fatigue Analysis Of The Welded Region In The Automotive Torsion Beam Rear Suspension System, Nan Zhan, Xiaochuan Zhang Oct 2016

Fatigue Analysis Of The Welded Region In The Automotive Torsion Beam Rear Suspension System, Nan Zhan, Xiaochuan Zhang

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Fatigue Properties Of Magnetorheological Elastomers And The Design Of Interfacial Layers To Improve Fatigue Life., Yanfen Zhou Jan 2016

Fatigue Properties Of Magnetorheological Elastomers And The Design Of Interfacial Layers To Improve Fatigue Life., Yanfen Zhou

Doctoral

The primary aim of this PhD programme was to understand the fatigue behaviour of magnetorheological elastomers (MREs) and provide a reliable fatigue life predictor for this class of materials. To realise this aim required the study of the dynamic behaviour of MREs using the equi-biaxial bubble inflation test method. Isotropic and anisotropic MREs were fabricated from silicone rubber (SR) filled with soft carbonyl iron (CI) particles. The equi-biaxial fatigue behaviour of these samples was determined using a bubble inflation method. Wöhler (S-N) curves for both isotropic and anisotropic MREs were produced by subjecting the compounds to cycling over a range …


Finite Element Frequency Domain Solution Of Nonlinear Panel Flutter With Temperature Effects And Fatigue Life Analysis, David Yongxiang Xue Oct 1991

Finite Element Frequency Domain Solution Of Nonlinear Panel Flutter With Temperature Effects And Fatigue Life Analysis, David Yongxiang Xue

Mechanical & Aerospace Engineering Theses & Dissertations

A frequency domain solution method for nonlinear panel flutter with thermal effects using a consistent finite element formulation has been developed. The von Karman nonlinear strain-displacement relation is used to account for large deflections, the quasi-steady first-order piston theory is employed for aerodynamic loading and the quasi-steady thermal stress theory is applied for the thermal stresses with a given change of the temperature distribution, ΔΤ (x, y, z). The equation of motion under a combined thermal-aerodynamic loading can be mathematically separated into two equations and then solved in sequence: (1) thermal-aerodynamic postbuckling and (2) limit-cycle oscillation. The Newton-Raphson iteration technique …