Open Access. Powered by Scholars. Published by Universities.®

Engineering Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering Mechanics

Improvement Of The Material's Mechanical Characteristics Using Intelligent Real Time Control Interfaces In Hfc Hardening Process, Florentin Smarandache, Luige Vladareanu, Mihaiela Iliescu, Victor Vladareanu, Alexandru Gal, Octavian Melinte, Adrian Margean Mar 2018

Improvement Of The Material's Mechanical Characteristics Using Intelligent Real Time Control Interfaces In Hfc Hardening Process, Florentin Smarandache, Luige Vladareanu, Mihaiela Iliescu, Victor Vladareanu, Alexandru Gal, Octavian Melinte, Adrian Margean

Branch Mathematics and Statistics Faculty and Staff Publications

The paper presents Intelligent Control (IC) Interfaces for real time control of mechatronic systems applied to Hardening Process Control (HPC) in order to improvement of the material's mechanical characteristics. Implementation of IC laws in the intelligent real time control interfaces depends on the particular circumstances of the models characteristics used and the exact definition of optimization problem. The results led to the development of the IC interfaces in real time through Particle Swarm Optimization (PSO) and neural networks (NN) using offline the regression methods.


The Mathematical Theory Of Deformation Arrest In Large-Strain Dynamic Plasticity, Brendan A. Kullback Apr 2017

The Mathematical Theory Of Deformation Arrest In Large-Strain Dynamic Plasticity, Brendan A. Kullback

Mechanical Engineering ETDs

Ductile structural components subjected to explosive loadings exhibit a large range of behaviors. The response of beams, walls, and blast doors is estimated using two methods. The engineering level approaches are highly simplified and neglect much of the relevant physics while the use of finite element or shock-code simulation is expensive and not suited to rapid problem solving and parameter studies. In this dissertation, a medium fidelity reduced order modeling approach has been derived to capture the most relevant physics governing rupture of ductile bodies dynamically deforming in tension.

Solution of the inertially stretching jet is used to reveal the …