Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

2013

Discipline
Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 225

Full-Text Articles in Engineering Science and Materials

Localized Corrosion Behavior Of Sensitized 304 Stainless Steel By Scanning Reference Electrode Technique, Chen-Qing Ye, Rong-Gang Hu, Rui-Qing Hou, Xiao-Ping Wang, Rong-Gui Du, Chang-Jian Lin Dec 2013

Localized Corrosion Behavior Of Sensitized 304 Stainless Steel By Scanning Reference Electrode Technique, Chen-Qing Ye, Rong-Gang Hu, Rui-Qing Hou, Xiao-Ping Wang, Rong-Gui Du, Chang-Jian Lin

Journal of Electrochemistry

Based on a home-built setup of scanning reference electrode technique, and combined with conventional electrochemical measurements, the localized corrosion behavior of sensitized 304 stainless steel (304ss) had been investigated in this work. The results showed that, the non-sensitized 304ss or 304ss sensitized at 550 oC was susceptible to pitting; while 304ss sensitized at 650 oC or 750 oC suffered severe intergranular corrosion in 10% FeCl3 solution.


Cmk-3/Sulfur Composite (CXSY) And Room-Temperature Na/S Battery, Qing Zhao, Yu-Xiang Hu, Kai Zhang, Li-Jiang Wang, Zhan-Liang Tao, Jun Chen Dec 2013

Cmk-3/Sulfur Composite (CXSY) And Room-Temperature Na/S Battery, Qing Zhao, Yu-Xiang Hu, Kai Zhang, Li-Jiang Wang, Zhan-Liang Tao, Jun Chen

Journal of Electrochemistry

A series of ordered mesoporous carbon (CMK-3)/sulfur composite (CxSy) with different sulfur contents were synthesized via a melt-diffusion method. XRD, Raman, BET, SEM, and TEM techniques were used to characterize the structure and morphology of the as-prepared composite. The electrochemical performance of CMK-3/sulfur composite as the electrode of Na/S battery was tested at room temperature. Cyclic voltammograms show that one obvious reduction peak was located at about 1.61V, which is corresponding to the formation of Na2Sx (x=2~5), while two oxidation peaks were displayed at about 1.82V and 1.95V, which are belonging to the …


Surface Composition Structure And Electrochemical Performance Of Aluminum Doped Lifepo4, Huai-Fang Shang, Wei-Feng Huang, Wang-Sheng Hu, Ding-Guo Xia, Zi-Yu Wu Dec 2013

Surface Composition Structure And Electrochemical Performance Of Aluminum Doped Lifepo4, Huai-Fang Shang, Wei-Feng Huang, Wang-Sheng Hu, Ding-Guo Xia, Zi-Yu Wu

Journal of Electrochemistry

Despite there are many successful reports about the preparation of electrode materials with surface coating for lithium ion batteries, the study in surface self-coating of cathode materials using segregation of doping elements and their electrochemical properties is still very rare. The LiFePO4 particles with rich-Al on the surface were synthesized by one step solvothermal route. TEM results demonstrated that the surface of the obtained LiFePO4 particles was well-covered by the amorphous coating. The soft X-ray absorption spectroscopy (XAS) and Auger electron spectroscopy (AES) component analyses revealed that the amorphous coating was composed of LiFe1-xAlxPO …


Controllable Synthesis Of Dispersed Spherical Fe3O4 Nanoparticles As Lithium-Inserted Materials, Hong-Li Zou, Wei-Shan Li Dec 2013

Controllable Synthesis Of Dispersed Spherical Fe3O4 Nanoparticles As Lithium-Inserted Materials, Hong-Li Zou, Wei-Shan Li

Journal of Electrochemistry

Dispersed spherical Fe3O4 nanoparticles were synthesized by a hydrothermal method. The influences of odecyl trimethyl ammonium bromide (DTAB) concentration on the morphology and particle size of the as-prepared Fe3O4 were studied. Electrochemical performance of the as-prepared sample as anode materials of lithium ion battery was investigated. It is found that the as-prepared sample exhibits superior rate performance and cycle performance. The nano-sized materials provide structural stability and favor the transfer of lithium ions.


Electrochemical Na-Storage Materials And Their Applications For Na-Ion Batteries, Jiang-Feng Qian, Xue-Ping Gao, Han-Xi Yang Dec 2013

Electrochemical Na-Storage Materials And Their Applications For Na-Ion Batteries, Jiang-Feng Qian, Xue-Ping Gao, Han-Xi Yang

Journal of Electrochemistry

Oncoming large scale electric energy storage (EES) requires battery systems not only to have sufficient storage capacity but also to be cost-effective and environmentally friendly. Li-ion batteries for widespread EES applications may be limited due to the constraint of global lithium resource. From the considerations of available resources and environmental impact, Na-ion batteries have potential advantages as next generation secondary batteries and an alternative to Li-ion batteries. However, in the present state of the art, the Na-storage cathodes reported so far are still deficient both in energy density and power capability, while the carbon and alloy anodes for Na-ion batteries …


Application Of Synchrotron Radiation Based Electrochemical In-Situ Techniques To Study Of Electrode Materials For Lithium-Ion Batteries, Zheng-Liang Gong, Wei Zhang, Dong-Ping Lv, Xiao-Gang Hao, Wen Wen, Zheng Jiang, Yong Yang Dec 2013

Application Of Synchrotron Radiation Based Electrochemical In-Situ Techniques To Study Of Electrode Materials For Lithium-Ion Batteries, Zheng-Liang Gong, Wei Zhang, Dong-Ping Lv, Xiao-Gang Hao, Wen Wen, Zheng Jiang, Yong Yang

Journal of Electrochemistry

Due to its merits of high brightness and high intensity, high level of polarization and wide tunability in energy, etc., synchrotron radiation technique provides an unique platform for analysis of the relationship among composition–structure–performance of materials for lithium ion batteries, especially for in-situ, real time dynamic investigation of the electrochemical reaction mechanism, aging process and failure mechanism during charge-discharge cycling. In this paper, we review the latest developments in application of synchrotron based electrochemical in-situ experimental methods to studies of lithium ion batteries. The paper mainly focuses on the application of electrochemical in-siu XRD and XAFS techniques to the investigations …


Preparation And Electrochemical Properties Of Amorphous Znsno3/C By Hydrothermally Carbonization Method, Guo-Qing Fang, Rui-Xue Zhang, Wei-Wei Liu, Bing-Bo Xia, Hong-Dan Sun, Hai-Bo Wang, Jing-Jing Wu, Shinko Kaneko, De-Cheng Li Dec 2013

Preparation And Electrochemical Properties Of Amorphous Znsno3/C By Hydrothermally Carbonization Method, Guo-Qing Fang, Rui-Xue Zhang, Wei-Wei Liu, Bing-Bo Xia, Hong-Dan Sun, Hai-Bo Wang, Jing-Jing Wu, Shinko Kaneko, De-Cheng Li

Journal of Electrochemistry

The amorphous ZnSnO3@C composite was synthesized via a simple glucose hydrothermal and subsequent carbonization approach. The structure, morphology and electrochemical property of the composite were characterized by XRD, TEM and electrochemical measurements. Compared to bare ZnSnO3, the ZnSnO3/C composite exhibited markedly enhanced lithium storage property and cycle performance, delivering a reversible capacity of 659 mAh·g-1 after 100 cycles at a current density of 100 mA·g-1.


An Investigation On The Solid Electrolyte Interphase Of Silicon Anode For Li-Ion Batteries Through Force Curve Method, Jie-Yun Zheng, Hao Zheng, Rui Wang, Hong Li, Li-Quan Chen Dec 2013

An Investigation On The Solid Electrolyte Interphase Of Silicon Anode For Li-Ion Batteries Through Force Curve Method, Jie-Yun Zheng, Hao Zheng, Rui Wang, Hong Li, Li-Quan Chen

Journal of Electrochemistry

Non-aqueous electrolyte has been widely used in commercial Li-ion batteries. Optimized choices are proceeding among the various types of salts and solvents in an effort to achieve higher performance of electrolyte. However, the electrolyte will be reduced in low potential and the reductive product will be deposited on the surface of anode to form a passivating layer, solid electrolyte interphase (SEI). Herein an atomic force microscopy (AFM) based method was introduced to study the structure and mechanical property of SEI on silicon thin film anode during the first cycle. Silicon has been known as the most potential candidate anode for …


Aqueous Solution-Evaporation Route Synthesis And Phase Structural Research Of The Li-Rich Cathode Li1.23Ni0.09Co0.12Mn0.56O2 By In-Situ Xrd, Chong-Heng Shen, Shou-Yu Shen, Zhou Lin, Xiao-Mei Zheng, Hang Su, Ling Huang, Jun-Tao Li, Shi-Gang Sun Dec 2013

Aqueous Solution-Evaporation Route Synthesis And Phase Structural Research Of The Li-Rich Cathode Li1.23Ni0.09Co0.12Mn0.56O2 By In-Situ Xrd, Chong-Heng Shen, Shou-Yu Shen, Zhou Lin, Xiao-Mei Zheng, Hang Su, Ling Huang, Jun-Tao Li, Shi-Gang Sun

Journal of Electrochemistry

The Li-rich Li1.23Ni0.09Co0.12Mn0.56O2 material was synthesized via aqueous solution-evaporation route. The structure and morphology of the material were characterized by means of XRD and SEM. The results indicated that the single particle of the product was polygonal with the size of 330 nm and the structure was layered solid solution with a certain amount of Li2MnO3. Electrochemical tests showed that the first discharge capacity of the Li-rich layered material was 250.8 mAh·g-1 at 0.1C,the capacity retention was 86.5% after 40 cycles. Through in-situ XRD study a …


Synthesis And Electrochemical Property Of Li2Fesio4/C Cathode Material By Solid State Method, Jiao-Li Sun, Zhi-Jiao Chen, Yi-Xiao Li, Hu Cheng Dec 2013

Synthesis And Electrochemical Property Of Li2Fesio4/C Cathode Material By Solid State Method, Jiao-Li Sun, Zhi-Jiao Chen, Yi-Xiao Li, Hu Cheng

Journal of Electrochemistry

Li2FeSiO4/C cathode material was synthesized using Li2SiO3 and FeC2O4 as raw materials by solid state method. The structure and morphology of the material were characterized by XRD and SEM. The electrochemical properties of the material were studied by constant-current cyclic testing. The results show that Li2FeSiO4/C has a good electrochemical performance. The first discharge capacity of Li2FeSiO4/C cathode material at 30oC reached 167 mAhg-1 when cycled at 10 mAg-1 between 1.5 and 4.8 V.


Preparation And Electrochemical Properties Of Flake-Like Liv3O8 By Soft Template Assisted Sol-Gel Method As Anode Material For Aqueous Li-Ion Battery, Shuai Tan, Dan Sun, Hai-Yan Wang, Tian-Li Hou, Zhong-Xing Xiao, You-Gen Tang Dec 2013

Preparation And Electrochemical Properties Of Flake-Like Liv3O8 By Soft Template Assisted Sol-Gel Method As Anode Material For Aqueous Li-Ion Battery, Shuai Tan, Dan Sun, Hai-Yan Wang, Tian-Li Hou, Zhong-Xing Xiao, You-Gen Tang

Journal of Electrochemistry

Anode material has become the key issue for restricting the development of aqueous lithium ion battery (ALIB). Flake-like LiV3O8 materials were synthesized by sol-gel method using sodium dodecyl benzene sulfonate (SDBS) as a template. The XRD and SEM results showed that as-prepared flake-like LiV3O8 was of high purity with monoclinic system and P21/m space group. LiMn2O4//Li2SO4//LiV3O8 ALIB was assembled and tested. As observed, the flake-like LiV3O8 here exhibited good high-rate performance and cycling stability. A high discharge capacity of 154 mAh.g-1 (based on the mass …


Synthesis And Electrochemical Performance Of Nano Licopo4 By Polyol Method, Fei Wang, Yang Jun Dec 2013

Synthesis And Electrochemical Performance Of Nano Licopo4 By Polyol Method, Fei Wang, Yang Jun

Journal of Electrochemistry

High potential LiCoPO4 cathode material was synthesized by polyol method. Carbon layer of ca. 3 nm thick was coated on the LiCoPO4 surfaces by chemical vapor deposition from methylbenzene. Crystalline structure, morphology and electrochemical performance of the sample were studied by XRD, SEM, TEM, CV and galvanostatic charge/discharge curve. The synthesized material via polyol method showed a pure phase of LiCoPO4. The LiCoPO4/C electrode delivered a high discharge capacity of 132 mAh·g-1 and maintained 78% of the initial capacity after 50 cycles at 0.1C rate. The two-step extraction/insertion behavior of Li+ in LiCoPO4/C …


Preparation Of The Particle Size Controllable Lifepo4/C And Its Electrochemical Profile Characterization, Ming-E Wang, Jing-Yuan Liu, Meng-Yan Hou, Yong-Yao Xia Dec 2013

Preparation Of The Particle Size Controllable Lifepo4/C And Its Electrochemical Profile Characterization, Ming-E Wang, Jing-Yuan Liu, Meng-Yan Hou, Yong-Yao Xia

Journal of Electrochemistry

We adopted an effective route to prepare the particle size controllable core-shell structure carbon-coated LiFePO4 from different sized FePO4 precursors, varying from 80 nm, 200 nm and 1 μm by an in situ polymerization method integrated with a surface modification technology. The discharge capacities of the three sized LiFePO4/C are, respectively, 162 mAh·g-1, 142 mAh·g-1 and 92 mAh·g-1 at 0.1C rate. The nano-sized LiFePO4-a/C (80 nm) delivers a discharge capacity as large as 100 mAh·g-1 even at 30C, while the macroscopic LiFePO4-c/C (1 μm) exhibits a much poorer discharge …


Modeling Reliability Growth In Accelerated Stress Testing, Jason K. Freels Dec 2013

Modeling Reliability Growth In Accelerated Stress Testing, Jason K. Freels

Theses and Dissertations

Qualitative accelerated test methods improve system reliability by identifying and removing initial design flaws. However, schedule and cost constraints often preclude sufficient testing to generate a meaningful reliability estimate from the data obtained in these tests. In this dissertation a modified accelerated life test is proposed to assess the likelihood of attaining a reliability requirement based on tests of early system prototypes. Assuming each prototype contains an unknown number of independent competing failure modes whose respective times to occurrence are governed by a distinct Weibull law, the observed failure data from this qualitative test are shown to follow a poly-Weibull …


Structure And Energetics Of Nanoparticles And Ionomer Films In Fuel Cell Catalyst Layers, Qianping He Dec 2013

Structure And Energetics Of Nanoparticles And Ionomer Films In Fuel Cell Catalyst Layers, Qianping He

Doctoral Dissertations

Improving the durability and utilization efficiency of the platinum-on-carbon (Pt/C) catalyst is of vital importance to the commercialization of the polymer electrolyte membrane fuel cell (PEMFC). This body of work provides molecular level insights to aid the fulfillment of this goal. Chapter 1 describes the use of molecular dynamics (MD) simulation in an effort to understand the Pt/C degradation issue from the nano-adhesion point of view. The roles of catalyst nanoparticle size, shape, Pt/C surface oxidation and the extent of ionomer film hydration are investigated to study their effects on nano-particle adhesion. It is found that the adhesion force strengthens …


Me-Em Enewsbrief, December 2013, Department Of Mechanical Engineering-Engineering Mechanics, Michigan Technological University Dec 2013

Me-Em Enewsbrief, December 2013, Department Of Mechanical Engineering-Engineering Mechanics, Michigan Technological University

Department of Mechanical Engineering-Engineering Mechanics eNewsBrief

No abstract provided.


Mode I Fracture Toughness Of Eight-Harness-Satin Carbon Cloth Weaves For Co-Cured And Post-Bonded Laminates, Josh E. Smith Dec 2013

Mode I Fracture Toughness Of Eight-Harness-Satin Carbon Cloth Weaves For Co-Cured And Post-Bonded Laminates, Josh E. Smith

Master's Theses

Mode I interlaminar fracture of 3k 8-Harness-Satin Carbon cloth, with identical fill and weft yarns, pre-impregnated with Newport 307 resin was investigated through the DCB test (ASTM D5528). Crack propagations along both the fill and weft yarns were considered for both post-bonded (co-bonded) and co-cured laminates. A patent-pending delamination insertion method was compared to the standard Teflon film option to assess its applicability to mode I fracture testing. The Modified Beam Theory, Compliance Calibration method, and Modified Compliance Calibration method were used for comparative purposes for these investigations and to evaluate the validity of the proposed Equivalent Stiffness (EQS) method. …


An Automated Finite Element Analysis Framework For The Probabilistic Evaluation Of Composite Lamina Properties, Jonathan Phillips Weigand Dec 2013

An Automated Finite Element Analysis Framework For The Probabilistic Evaluation Of Composite Lamina Properties, Jonathan Phillips Weigand

Masters Theses

This thesis outlines the development of computational modeling tools used to predict the elastic properties of composite lamina from representative volume elements (RVE) using numerical methods. The homogenization approach involves the use of Gauss’s Theorem to simply the average volumetric strain integral into a surface integral containing which is defined by surface displacements and their direction. Simulations of RVEs under specific loading conditions (longitudinal tension or shear and transverse tension or shear) are then performed in the software package ABAQUS to obtain the surface displacements. It was found that obtaining quality meshes and applying periodic boundary conditions for each RVE …


Feasibility Of The Use Of Ultrasound Measurements For Grade Verification Of The Performance Grade Asphalt Binders, Mehdi Khalili Dec 2013

Feasibility Of The Use Of Ultrasound Measurements For Grade Verification Of The Performance Grade Asphalt Binders, Mehdi Khalili

UNLV Theses, Dissertations, Professional Papers, and Capstones

This research investigates the feasibility of application of high frequency immersion ultrasonic measurement (UM) to discriminate different performance grade (PG) asphalt binders. PG asphalt binder is one of the main components of hot mix asphalt used for roadway construction. UT may provide an inexpensive alternative to sophisticated tests currently used for quality control of PG asphalt binders. Nine different PG asphalt binders used were selected for this investigation. Velocity (V) and integrated response (IR) of the ultrasonic wave were measured. The IR is a measure of the ratio of ultrasonic energy transmitted into the material to the ultrasonic energy reflected …


Kolsky Bar Experiment For High-Rate Large Deformations Of Polycarbonate, Jason Gerald Vogeler Dec 2013

Kolsky Bar Experiment For High-Rate Large Deformations Of Polycarbonate, Jason Gerald Vogeler

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

Polycarbonate (PC) is a tough, transparent engineering thermoplastic. Its impact strength and ability undergo large plastic deformations without shatter make PC an ideal protective material for impact-resilient eyewear, aircraft windows and transparent armor. A good understanding of the response of this material to large deformations at high strain rates is critical for its utilization in these applications. To this end, a striker-less Kolsky bar device is employed in this work for the needed material characterization. The apparatus allow impulsive torsion and/or compression loadings with pulse durations sufficiently long for the plastic flow behavior to develop fully. Three new testing techniques …


Kolsky Bar Experiment For High-Rate Large Deformations Of Polycarbonate, Jason G. Vogeler Dec 2013

Kolsky Bar Experiment For High-Rate Large Deformations Of Polycarbonate, Jason G. Vogeler

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

Polycarbonate (PC) is a tough, transparent engineering thermoplastic. Its impact strength and ability undergo large plastic deformations without shatter make PC an ideal protective material for impact-resilient eyewear, aircraft windows and transparent armor. A good understanding of the response of this material to large deformations at high strain rates is critical for its utilization in these applications. To this end, a striker-less Kolsky bar device is employed in this work for the needed material characterization. The apparatus allow impulsive torsion and/or compression loadings with pulse durations sufficiently long for the plastic flow behavior to develop fully. Three new testing techniques …


Characterization And Processing Evaluation Of Starch/High-Density Polyethylene Materials In Extrusion Blow Molding, Bradley Dale Bacigalupi Dec 2013

Characterization And Processing Evaluation Of Starch/High-Density Polyethylene Materials In Extrusion Blow Molding, Bradley Dale Bacigalupi

Theses and Dissertations

The growing negative impacts of non-biodegradable plastics derived from non-renewable materials have created increasing interest throughout the world for new materials that are both biodegradable and renewable, that can be combined with or replace traditional plastics. Plant-based thermoplastic starch (TPS), a promising alternative material to traditional petroleum based resin, is both biodegradable and renewable and has great potential for use in plastic manufacturing processes. Two major obstacles that prevent more widespread use of TPS include; TPS base material, which is typically manufactured in a flake or powder, is incompatible with standard plastics production equipment that require pelletized resin, the second …


Impact Damage On A Thin Glass Plate With A Thin Polycarbonate Backing, Wenke Hu, Yenan Wang, Jian Yu, Chian-Fong Yen, Florin Bobaru Nov 2013

Impact Damage On A Thin Glass Plate With A Thin Polycarbonate Backing, Wenke Hu, Yenan Wang, Jian Yu, Chian-Fong Yen, Florin Bobaru

Florin Bobaru Ph.D.

We present experimental and computational results for the impact of a spherical projectile on a thin glass plate with a thin polycarbonate backing plate, restrained in a metal frame, or in the absence of the frame. We analyze the dependence of the damage patterns in the glass plate on the increasing impact velocities, from 61 m/s to 200 m/s. Experimental results are compared with those from peridynamic simulations of a simplified model. The main fracture patterns observed experimentally are captured by the peridynamic model for each of the three projectile velocities tested. More accurate implementation of the actual boundary conditions …


Ergonomichandle And Articulating Laparoscopictool, M. Susan Hallbeck, Dmitry Oleynikov, Kathryn Done, Tim Judkins, Allison Dimartino, Jonathan Morse, Lawton N. Verner Nov 2013

Ergonomichandle And Articulating Laparoscopictool, M. Susan Hallbeck, Dmitry Oleynikov, Kathryn Done, Tim Judkins, Allison Dimartino, Jonathan Morse, Lawton N. Verner

Department of Mechanical and Materials Engineering: Faculty Publications

The present invention relates to a laparoscopic apparatus. The apparatus includes a handle having a body portion, a top surface, opposite bottom surface, a proximal and distal end. The top surface of the base is contoured to compliment the natural curve of the palm. The apparatus further includes a shaft projecting from the distal end of the handle. The shaft has a proximal and distal end. A control sphere is located on the handle. The control sphere can be moved by one or more of a user's fingers to indicate direction. An end effector is located at the distal end …


Assessment Of The Effectiveness Of An Aid For The Development Of The Kinetic Skills Required For T.I.G. Welding, Maurice Collins, Robert Morris Nov 2013

Assessment Of The Effectiveness Of An Aid For The Development Of The Kinetic Skills Required For T.I.G. Welding, Maurice Collins, Robert Morris

Conference papers

This action research project was carried out in the Technological University Dublin, Ireland. The authors are both Lecturers of Engineering in this college and have a keen interest in providing the best possible aids to their students learning. Three groups of engineering apprentices and one group of part time students took part in this project. At the time these students were taking a third level Tungsten Inert Gas welding (T.I.G.) training module. Qualified T.I.G. welders are in very high demand worldwide and as such can demand a very high rate of pay for their services. The kinetic skills applicable to …


Synthesis Of Carbon Nanotubes Using High Voltage And High Frequency Induction Field, Kalty Vazquez Nov 2013

Synthesis Of Carbon Nanotubes Using High Voltage And High Frequency Induction Field, Kalty Vazquez

FIU Electronic Theses and Dissertations

The fields of nanomaterial and nanostructures are some of the fastest growing fields in material science today. Carbon nanotubes are at the forefront of these fields and their unique mechanical and electrical properties are of great interest to those working in multiple engineering fields.

The overall objective of this study was to design and develop a new process and the equipment necessary, to synthesize carbon nanotubes using high voltage and a high-frequency induction field. This was the first time that a high voltage and an induction field have been used simultaneously in high yield production of carbon nanotubes.

The source …


Scalar Differential Equation For Slowly-Varying Thickness-Shear Modes In At-Cut Quartz Resonators With Surface Impedance For Acoustic Wave Sensor Application, Huijing He, Jiashi Yang, John A. Kosinski Nov 2013

Scalar Differential Equation For Slowly-Varying Thickness-Shear Modes In At-Cut Quartz Resonators With Surface Impedance For Acoustic Wave Sensor Application, Huijing He, Jiashi Yang, John A. Kosinski

Department of Mechanical and Materials Engineering: Faculty Publications

For time-harmonic motions, we generalize a 2-D scalar differential equation derived previously by Tiersten for slowly-varying thickness-shear vibrations of AT-cut quartz resonators. The purpose of the generalization is to include the effects of surface acoustic impedance from, e.g., mass layers or fluids for sensor applications. In addition to the variation of fields along the plate thickness, which is considered in the usual 1-D acoustic wave sensor models, the equation obtained also describes in-plane variations of the fields, and therefore can be used to study the vibrations of finite plate sensors with edge effects. The equation is compared with the theory …


Corrosion Behavior Of Zinc Covered With Thin Electrolyte Layers Under External Electric Field, Xu-Jie Yuan, Jun-Xi Zhang, Shi-Ming Zhang, Tian Tan, Qi-Meng Chen Oct 2013

Corrosion Behavior Of Zinc Covered With Thin Electrolyte Layers Under External Electric Field, Xu-Jie Yuan, Jun-Xi Zhang, Shi-Ming Zhang, Tian Tan, Qi-Meng Chen

Journal of Electrochemistry

The corrosion behavior of zinc covered with thin electrolyte layers (TELs) under an application of external electric field was investigated by performing corrosion potential and cathodic polarization current measurements. The results showed that the Ecorr and ic values first increased and then decreased with the increase of electrolyte layer thickness. Pure zinc exhibited the maximum corrosion potential as the TELs increased to 400 μm under the controls of cathodic process and corrosion products. The application of external electric field resulted in either a negative shift in corrosion potential of zinc or an increase of cathodic current. The effect of external …


Corrosion Behavior Of A High Strength Low Alloy Steel Under Hydrostatic Pressure In Deep Ocean, Hai-Jing Sun, Li Liu, Ying Li Oct 2013

Corrosion Behavior Of A High Strength Low Alloy Steel Under Hydrostatic Pressure In Deep Ocean, Hai-Jing Sun, Li Liu, Ying Li

Journal of Electrochemistry

The corrosion behavior of a high strength low alloy steel (HSLA steel) in 3.5% NaCl solution under hydrostatic pressure (HP) in deep ocean has been investigated by performing weight loss measurement, obtaining potentiodynamic polarization curve and emplying electrochemical impedance spectroscopy (EIS) using the set up for simulation of deep sea environment in laboratory. The results were compared with that at atmospheric pressure and the influence of HP was emphatically discussed. The results revealed identical corrosion mechanism for HSLA steel at 3.5 × 106 Pa and 1 × 105 Pa. Howevere, the development of such a corrosion process was remarkably accelerated …


Corrosion Resistance Of Low Pressure Cold Sprayed Al Coating On Q235 Steel In Seawater, Xiang-Bo Li, Li-Kun Xu, Shan-Guang Qiu, Jia Wang, Guo-Sheng Huang, Cai-Chang Dong Oct 2013

Corrosion Resistance Of Low Pressure Cold Sprayed Al Coating On Q235 Steel In Seawater, Xiang-Bo Li, Li-Kun Xu, Shan-Guang Qiu, Jia Wang, Guo-Sheng Huang, Cai-Chang Dong

Journal of Electrochemistry

Taking aluminium (Al) powder mixed with 10% (by volume) of Al2O3 powder as raw materials, the Al coating was prepared on the Q235 carbon steel substrate using a portable low pressure cold spraying equipment. Through the measurements of the corrosion potential and potentiodynamic polarization, the electrochemical corrosion behavior of the low pressure cold sprayed Al coating in seawater was studied in comparison with those of the Al coatings deposited with high pressure cold spray and thermal spray processes. At the same time, the surface and cross-section morphologies of these coatings were observed with scanning electron microscope. The results showed that …