Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

2008

Series

Discipline
Institution
Keyword
Publication

Articles 1 - 8 of 8

Full-Text Articles in Engineering Science and Materials

Dynamic Design Guidelines For Prestressed Concrete Sleepers, Alexander Remennikov, Martin H. Murray, Sakdirat Kaewunruen Dec 2008

Dynamic Design Guidelines For Prestressed Concrete Sleepers, Alexander Remennikov, Martin H. Murray, Sakdirat Kaewunruen

Faculty of Engineering - Papers (Archive)

Current design philosophy, outlined in AS 1085.14, is based on the analysis of permissible stresses resulting from quasi-static wheel loads and essentially the static response of concrete sleepers. In general, cracking can incur when the bottom fibre stress is larger than tensile strength of concrete. Premature cracking of prestressed concrete sleepers has been detected in railway tracks. The major cause of cracking is the infrequent but high-magnitude wheel loads produced by a small percentage of “out-of-round” wheels or railhead surface defects, which are crudely accounted for in AS 1085.14 by a single load factor. Based on the current design method, …


Hand-Held Flyback Driven Coaxial Dielectric Barrier Discharge: Development And Characterization, Victor J. Law, Vladimir Milosavljevic, Neil O’Connor, James F. Lalor, Steven Daniels Sep 2008

Hand-Held Flyback Driven Coaxial Dielectric Barrier Discharge: Development And Characterization, Victor J. Law, Vladimir Milosavljevic, Neil O’Connor, James F. Lalor, Steven Daniels

Articles

The development of a handheld single and triple chamber atmospheric pressure coaxial dielectric barrier discharge driven by Flyback circuitry for helium and argon discharges is described. The Flyback uses external metal-oxide-semiconductor field-effect transistor power switching technology and the transformer operates in the continuous current mode to convert a continuous dc power of 10–33 W to generate a 1.2–1.6 kV 3.5 μs pulse. An argon discharge breakdown voltage of ∼768 V is measured. With a 50 kHz, pulse repetition rate and an argon flow rate of 0.5–10 argon slm (slm denotes standard liters per minute), the electrical power density deposited in …


Investigation Of Uv-Led Initiated Photopolymerisation Of Bio-Compatible Hema, Sharon Mcdermott Sep 2008

Investigation Of Uv-Led Initiated Photopolymerisation Of Bio-Compatible Hema, Sharon Mcdermott

Doctoral

Ultraviolet (UV) fluorescent lamps are widely used in photopolymerisation processes. However, there a number of disadvantages to these lamps, namely, their intensity varies over time and has to be constantly monitored. This thesis is concerned with the possibility of replacing these lamps with UV Light Emitting Diodes (UV-LEDs). A number of emission characteristics of both the fluorescent lamp and the UV-LEDs were measured and compared to ensure that the optical properties of the UV-LEDs were equivalent to those of the lamps. From this study it was shown that the UV-LEDs have a quicker warm up time and exhibit a more …


The Role Of Silicon Content On Environmental Degradations Of T91 Steels, Ajit K. Roy, D. Maitra, Pankaj Kumar Aug 2008

The Role Of Silicon Content On Environmental Degradations Of T91 Steels, Ajit K. Roy, D. Maitra, Pankaj Kumar

Mechanical Engineering Faculty Research

T91 grade steels showed a gradual enhancement in tensile ductility at ambient temperature due to an increase in Si content from 0.5 to 2.0 weight percent (wt.%). However, the ultimate tensile strength was reduced only above 1.5 wt.% Si. The corrosion potential became more active in an acidic solution with increasing temperature. The cracking susceptibility in a similar environment under a slow-strain-rate (SSR) condition was enhanced at higher temperatures showing reduced ductility, time to failure, and true failure stress. Cathodic potentials applied to the test specimens in SSR testing caused an enhanced cracking tendency at 30 and 60°C, suggesting hydrogen …


Tensile Deformation Of A Nickel-Base Alloy At Elevated Temperatures, Ajit K. Roy, Anand Venkatesh, Vikram Marthandam Aug 2008

Tensile Deformation Of A Nickel-Base Alloy At Elevated Temperatures, Ajit K. Roy, Anand Venkatesh, Vikram Marthandam

Mechanical Engineering Faculty Research

The results of tensile testing involving Waspaloy indicate that the failure strain was gradually reduced at temperatures ranging between ambient and 300 °C. Further, serrations were observed in the engineering stress versus strain diagrams in the temperature range of 300-600 °C. The reduced failure strain and the formation of serrations in these temperature regimes could be the result of dynamic strain aging of this alloy. The extent of work hardening due to plastic deformation was reduced at temperatures above 300 °C. A combination of ductile and intergranular brittle failures was seen at temperatures above 600 °C. γ′ was detected at …


Structure Property Relationships In Electron Donating Systems For Potential Photovoltaic Applications., Jonathan Moghal Jan 2008

Structure Property Relationships In Electron Donating Systems For Potential Photovoltaic Applications., Jonathan Moghal

Doctoral

Conjugated polymers are considered to be one-dimensional semiconductors. In conjugated polymers single and double bonds alternatively bond the carbon atoms along the polymer chain. The loosely bound electrons determine the electronic properties of conjugated polymers. In order to utilise the properties of conjugated polymers in terms of a photovoltaic (PV) device application an acceptor material must be added. The acceptor material used in this study is used in buckminsterfullerence (C60). C60 was selected for this purpose due to its size and the fact that it can accept up to six additional electrons. Ultrafast charge transfers from a conducting polymer onto …


Comparison Of Vacuum Glazing Thermal Performance Predicted Using Two- And Three-Dimensional Models And Their Experimental Validation, Brian Norton, Philip Eames, Yueping Fang, Trevor Hyde, Neil Hewitt Jan 2008

Comparison Of Vacuum Glazing Thermal Performance Predicted Using Two- And Three-Dimensional Models And Their Experimental Validation, Brian Norton, Philip Eames, Yueping Fang, Trevor Hyde, Neil Hewitt

Conference Papers

The thermal performance of vacuum glazing was predicted using two dimensional (2-D) finite element and three dimensional (3-D) finite volume models. In the 2-D model, the vacuum space, including the pillar arrays, was represented by a material whose effective thermal conductivity was determined from the specified vacuum space width, the heat conduction through the pillar array and the calculated radiation heat transfer between the two interior glass surfaces within the vacuum gap. In the 3-D model, the support pillar array was incorporated and modeled within the glazing unit directly. The difference in predicted overall heat transfer coefficients between the two …


Control Of The Nanoscale Crystallinity And Phase Separation In Polymer Solar Cells, Chih-Wei Chu, Hoichang Yang, Wei-Jen Hou, Jinsong Huang, Gang Li, Yang Yang Jan 2008

Control Of The Nanoscale Crystallinity And Phase Separation In Polymer Solar Cells, Chih-Wei Chu, Hoichang Yang, Wei-Jen Hou, Jinsong Huang, Gang Li, Yang Yang

Department of Mechanical and Materials Engineering: Faculty Publications

Grazing-incidence x-ray diffraction and atomic force microscopy were performed on bulk heterojunction regioregular poly(3-hexylthiophene) (RR-P3HT) [6,6]-phenyl-C71-butyric acid methyl esters spin-cast films with different film processing conditions to correlate the crystalline nanostructure of P3HT with the corresponding solar cell performance. The increase in long wavelength absorption for solvent annealed films is related to highly conjugated crystal structure of RR-P3HT phase-separated in the active layer. Upon thermal annealing, the solvent annealed 50-nm-thick device shows high solar cell performance with fill factor up to 73% and power conversion efficiency of 3.80%.