Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Discipline
Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 597

Full-Text Articles in Engineering Science and Materials

Modelling The Addition Of Limestone In Cement Using Hydcem, Niall Holmes, Denis Kelliher, Mark Tyrer Sep 2019

Modelling The Addition Of Limestone In Cement Using Hydcem, Niall Holmes, Denis Kelliher, Mark Tyrer

Conference papers

Hydration models can aid in the prediction, understanding and description of hydration behaviour over time as the move towards more sustainable cements continues.

HYDCEM is a new model to predict the phase assemblage, degree of hydration and heat release over time for cements undergoing hydration for any w/c ratio and curing temperatures up to 450C. HYDCEM, written in MATLAB, complements more sophisticated thermodynamic models by predicting these properties over time using user-friendly inputs within one code. A number of functions and methods based on up to date cement hydration behaviour from the literature are hard-wired into the code along ...


Principal Component Neural Networks For Modeling, Prediction, And Optimization Of Hot Mix Asphalt Dynamics Modulus, Parnian Ghasemi, Mohamad Aslani, Derrick K. Rollins, R. Christopher Williams Aug 2019

Principal Component Neural Networks For Modeling, Prediction, And Optimization Of Hot Mix Asphalt Dynamics Modulus, Parnian Ghasemi, Mohamad Aslani, Derrick K. Rollins, R. Christopher Williams

Chemical and Biological Engineering Publications

The dynamic modulus of hot mix asphalt (HMA) is a fundamental material property that defines the stress-strain relationship based on viscoelastic principles and is a function of HMA properties, loading rate, and temperature. Because of the large number of efficacious predictors (factors) and their nonlinear interrelationships, developing predictive models for dynamic modulus can be a challenging task. In this research, results obtained from a series of laboratory tests including mixture dynamic modulus, aggregate gradation, dynamic shear rheometer (on asphalt binder), and mixture volumetric are used to create a database. The created database is used to develop a model for estimating ...


High-Performance Polyvinyl Chloride Gel Artificial Muscle Actuator With Graphene Oxide And Plasticizer, Taeseon Hwang, Zachary Frank, Justin Neubauer, Kwang Jin Kim Jul 2019

High-Performance Polyvinyl Chloride Gel Artificial Muscle Actuator With Graphene Oxide And Plasticizer, Taeseon Hwang, Zachary Frank, Justin Neubauer, Kwang Jin Kim

Mechanical Engineering Faculty Publications

A transparent and electroactive plasticized polyvinyl chloride (PVC) gel was investigated to use as a soft actuator for artificial muscle applications. PVC gels were prepared with varying plasticizer (dibutyl adipate, DBA) content. The prepared PVC gels were characterized using Fourier-transform infrared spectroscopy, thermogravimetric analysis, and dynamic mechanical analysis. The DBA content in the PVC gel was shown to have an inverse relationship with both the storage and loss modulus. The electromechanical performance of PVC gels was demonstrated for both single-layer and stacked multi-layer actuators. When voltage was applied to a single-layer actuator and then increased, the maximum displacement of PVC ...


Group Iv Environmentally Benign, Inexpensive Semiconductor Nanomaterials For Solar Cells, Lisa Je Jun 2019

Group Iv Environmentally Benign, Inexpensive Semiconductor Nanomaterials For Solar Cells, Lisa Je

ENGS 86 Independent Projects (AB Students)

Modern solar cells are composed of silicon, cadmium tellurium, and copper indium gallium diselenide. While these materials are efficient, elements such as cadmium and indium are rare and expensive. To make this renewable energy source more inexpensive and sustainable, the Liu Optics lab is substituting expensive rare earth metals for more commonly found transition state metals. Work has been done to replace the solar cell layers composed of cadmium and gallium to replace them with glass, silicon, and/or thin films. Common metals such as germanium and tin are investigated and characterized to provide a platform for solar cell components.


Thermal And Orbital Analysis Of Darkness Cubesat, Katie Dickey May 2019

Thermal And Orbital Analysis Of Darkness Cubesat, Katie Dickey

Honors Program Projects

Fermi National Accelerator Laboratory is sending a 3U CubeSat into LEO to search for a 3.5 keV photon corresponding to the decay of a theorized dark matter particle called the sterile neutrino. The CubeSat will encounter environmental variations while in orbit that can be computed through an orbital analysis using System’s Tool Kit. In order to minimize thermal noise readout, improve optical resolution, and increase bandwidth, the sensors must be kept below 170K while taking data. This temperature is difficult to achieve due to radiation from the Sun and the Earth’s albedo radiation. Through the thermal analysis ...


Wearable Devices For Single-Cell Sensing And Transfection, Lingqian Chang, Yu-Chieh Wang, Faheem Ershad, Ruiguo Yang, Cunjiang Yu, Yubo Fan May 2019

Wearable Devices For Single-Cell Sensing And Transfection, Lingqian Chang, Yu-Chieh Wang, Faheem Ershad, Ruiguo Yang, Cunjiang Yu, Yubo Fan

Mechanical & Materials Engineering Faculty Publications

Wearable healthcare devices are mainly used for biosensing and transdermal delivery. Recent advances in wearable biosensors allow for long-term and real-time monitoring of physiological conditions at a cellular resolution. Transdermal drug delivery systems have been further scaled down, enabling wide selections of cargo, from natural molecules (e.g., insulin and glucose) to bioengineered molecules (e.g., nanoparticles). Some emerging nanopatches show promise for precise single-cell gene transfection in vivo and have advantages over conventional tools in terms of delivery efficiency, safety, and controllability of delivered dose. In this review, we discuss recent technical advances in wearable micro/nano devices with ...


Influence Of Metal Additives On Microstructure And Properties Of Amorphous Metal–Sioc Composites, Kaisheng Ming, Qing Su, Chao Gu, Dongyue Xie, Yongqiang Wang, Michael Nastasi, Jian Wang Apr 2019

Influence Of Metal Additives On Microstructure And Properties Of Amorphous Metal–Sioc Composites, Kaisheng Ming, Qing Su, Chao Gu, Dongyue Xie, Yongqiang Wang, Michael Nastasi, Jian Wang

Mechanical & Materials Engineering Faculty Publications

Strong, ductile, and irradiation-tolerant structural materials are in urgent demand for improving the safety and efficiency of advanced nuclear reactors. Amorphous ceramics could be promising candidates for high irradiation tolerance due to thermal stability and lack of crystal defects. However, they are very brittle due to plastic flow instability. Here, we realized enhanced plasticity of amorphous ceramics through compositional and microstructural engineering. Two metal–amorphous ceramic composites, Fe-SiOC and Cu-SiOC, were fabricated by magnetron sputtering. Iron atoms are preferred to form uniformly distributed nano-sized Fe-rich amorphous clusters, while copper atoms grow non-uniformly distributed nano-crystalline Cu particles. The Fe-SiOC composite exhibits ...


A Discrete Curvature Estimation Based Low-Distortion Adaptive Savitzky-Golay Filter For Ecg Denoising, Hui Huang, Shiyan Hu, Ye Sun Apr 2019

A Discrete Curvature Estimation Based Low-Distortion Adaptive Savitzky-Golay Filter For Ecg Denoising, Hui Huang, Shiyan Hu, Ye Sun

Department of Mechanical Engineering-Engineering Mechanics Publications

Electrocardiogram (ECG) sensing is an important application for the diagnosis of cardiovascular diseases. Recently, driven by the emerging technology of wearable electronics, massive wearable ECG sensors are developed, which however brings additional sources of noise contamination on ECG signals from these wearable ECG sensors. In this paper, we propose a new low-distortion adaptive Savitzky-Golay (LDASG) filtering method for ECG denoising based on discrete curvature estimation, which demonstrates better performance than the state of the art of ECG denoising. The standard Savitzky-Golay (SG) filter has a remarkable performance of data smoothing. However, it lacks adaptability to signal variations and thus often ...


A Discrete Curvature Estimation Based Low-Distortion Adaptive Savitzky⁻Golay Filter For Ecg Denoising., Hui Huang, Shiyan Hu, Ye Sun Apr 2019

A Discrete Curvature Estimation Based Low-Distortion Adaptive Savitzky⁻Golay Filter For Ecg Denoising., Hui Huang, Shiyan Hu, Ye Sun

Michigan Tech Publications

Electrocardiogram (ECG) sensing is an important application for the diagnosis of cardiovascular diseases. Recently, driven by the emerging technology of wearable electronics, massive wearable ECG sensors are developed, which however brings additional sources of noise contamination on ECG signals from these wearable ECG sensors. In this paper, we propose a new low-distortion adaptive Savitzky-Golay (LDASG) filtering method for ECG denoising based on discrete curvature estimation, which demonstrates better performance than the state of the art of ECG denoising. The standard Savitzky-Golay (SG) filter has a remarkable performance of data smoothing. However, it lacks adaptability to signal variations and thus often ...


A Novel Correlation Model For Horizontal Axis Wind Turbines Operating At High-Interference Flow Regimes, Anurag Rajan, Fernando L. Ponta Mar 2019

A Novel Correlation Model For Horizontal Axis Wind Turbines Operating At High-Interference Flow Regimes, Anurag Rajan, Fernando L. Ponta

Department of Mechanical Engineering-Engineering Mechanics Publications

Driven by economics-of-scale factors, wind-turbine rotor sizes have increased formidably in recent years. Larger rotors with lighter blades of increased flexibility will experiment substantially higher levels of deformation. Future turbines will also incorporate advanced control strategies to widen the range of wind velocities over which energy is captured. These factors will extend turbine operational regimes, including flow states with high interference factors. In this paper we derive a new empirical relation to both improve and extend the range of Blade Element Momentum (BEM) models, when applied to high interference-factor regimes. In most BEM models, these flow regimes are modeled using ...


A Lagrangian Probability-Density-Function Model For Collisional Turbulent Fluid–Particle Flows, Alessio Innocenti, Rodney O. Fox, Maria Vittoria Salvetti, Sergio Chibbaro Mar 2019

A Lagrangian Probability-Density-Function Model For Collisional Turbulent Fluid–Particle Flows, Alessio Innocenti, Rodney O. Fox, Maria Vittoria Salvetti, Sergio Chibbaro

Chemical and Biological Engineering Publications

Inertial particles in turbulent flows are characterised by preferential concentration and segregation and, at sufficient mass loading, dense particle clusters may spontaneously arise due to momentum coupling between the phases. These clusters, in turn, can generate and sustain turbulence in the fluid phase, which we refer to as cluster-induced turbulence (CIT). In the present work, we tackle the problem of developing a framework for the stochastic modelling of moderately dense particle-laden flows, based on a Lagrangian probability-density-function formalism. This framework includes the Eulerian approach, and hence can be useful also for the development of two-fluid models. A rigorous formalism and ...


Progress Report I: Fabrication Of Nanopores In Silicon Nitride Membranes Using Self-Assembly Of Ps-B-Pmma, Unnati Joshi, Vishal Venkatesh, Hiromichi Yamamoto Mar 2019

Progress Report I: Fabrication Of Nanopores In Silicon Nitride Membranes Using Self-Assembly Of Ps-B-Pmma, Unnati Joshi, Vishal Venkatesh, Hiromichi Yamamoto

Protocols and Reports

This progress report describes fabrication of silicon nitride membranes from Si wafers using cleanroom techniques, and of nanopore preparation via a self-assembled PS-b-PMMA film. A 36.9 µm thick membrane is successfully prepared by KOH wet etching. The membrane is a layered structure of 36.8 µm thick Si and 116 nm thick silicon nitride. It is also exhibited that in the 47 nm thick PS-b-PMMA film, the nanopore structure is observed in the vicinity of a dust particle, but most of the area indicates lamellar domain structure. The thickness of PS-b-PMMA film will ...


Interactions Between Dislocations And Three-Dimensional Annealing Twins In Face Centered Cubic Metals, Yanxiang Liang, Xiaofang Yang, Mingyu Gong, Guisen Liu, Qing Liu, Jian Wang Mar 2019

Interactions Between Dislocations And Three-Dimensional Annealing Twins In Face Centered Cubic Metals, Yanxiang Liang, Xiaofang Yang, Mingyu Gong, Guisen Liu, Qing Liu, Jian Wang

Mechanical & Materials Engineering Faculty Publications

Annealing twins often form in metals with a face centered cubic structure during thermal and mechanical processing. Here, we conducted molecular dynamic (MD) simulations for copper and aluminum to study the interaction processes between {1 1 1}1/2 <1 1 0> dislocations and a three-dimensional annealing twin. Twin boundaries are characterized with Σ3{1 1 1} coherent twin boundaries (CTBs) and Σ3{1 1 2} incoherent twin boundaries (ITBs). MD results revealed that dislocation-ITB interactions affect slip transmission for a dislocation crossing CTBs, facilitating the nucleation of Lomer dislocation.


Direct Observation Of Early Stages Of Growth Of Multilayered Dna-Templated Au-Pd-Au Core-Shell Nanoparticles In Liquid Phase, Nabraj Bhattarai, Tanya Prozorov Feb 2019

Direct Observation Of Early Stages Of Growth Of Multilayered Dna-Templated Au-Pd-Au Core-Shell Nanoparticles In Liquid Phase, Nabraj Bhattarai, Tanya Prozorov

Ames Laboratory Accepted Manuscripts

We report here on direct observation of early stages of formation of multilayered bimetallic Au-Pd core-shell nanocubes and Au-Pd-Au core-shell nanostars in liquid phase using low-dose in situ scanning transmission electron microscopy (S/TEM) with the continuous flow fluid cell. The reduction of Pd and formation of Au-Pd core-shell is achieved through the flow of the reducing agent. Initial rapid growth of Pd on Au along <111> direction is followed by a slower rearrangement of Pd shell. We propose the mechanism for the DNA-directed shape transformation of Au-Pd core-shell nanocubes to adopt a nanostar-like morphology in the presence of T30 DNA ...


A Hamiltonian Surface-Shaping Approach For Control System Analysis And The Design Of Nonlinear Wave Energy Converters, Shadi Darani, Ossama Abdelkhalik, Rush D. Robinett Iii, David Wilson Feb 2019

A Hamiltonian Surface-Shaping Approach For Control System Analysis And The Design Of Nonlinear Wave Energy Converters, Shadi Darani, Ossama Abdelkhalik, Rush D. Robinett Iii, David Wilson

Department of Mechanical Engineering-Engineering Mechanics Publications

The dynamic model of Wave Energy Converters (WECs) may have nonlinearities due to several reasons such as a nonuniform buoy shape and/or nonlinear power takeoff units. This paper presents the Hamiltonian Surface-Shaping (HSS) approach as a tool for the analysis and design of nonlinear control of WECs. The Hamiltonian represents the stored energy in the system and can be constructed as a function of the WEC’s system states, its position, and velocity. The Hamiltonian surface is defined by the energy storage, while the system trajectories are constrained to this surface and determined by the power flows of the ...


Strength And Plasticity Of Amorphous Silicon Oxycarbide, Kaisheng Ming, Chao Gu, Qing Su, Yongqiang Wang, Arezoo Zare, Don A. Lucca, Michael Nastasi, Jian Wang Jan 2019

Strength And Plasticity Of Amorphous Silicon Oxycarbide, Kaisheng Ming, Chao Gu, Qing Su, Yongqiang Wang, Arezoo Zare, Don A. Lucca, Michael Nastasi, Jian Wang

Mechanical & Materials Engineering Faculty Publications

Amorphous SiOC films were synthesized by magnetron sputtering at room temperature with/without radio frequency (RF) bias and further improved in terms of mechanical properties by ion irradiation. As-deposited SiOC films without RF bias exhibit catastrophic failure at a low stress and strain, which is ascribed to microstructural heterogeneities associated with the formation of voids during deposition, as evidenced by transmission electron microscopy. Ion irradiation unifies microstructure accompanied with eliminating the voids, resulting in a simultaneously increase in strength and plasticity (ultimate strength of 5–7 GPa and the strain to shear instability of over 20%). Homogeneous microstructures are demonstrated ...


In Situ Mechanical Characterization Of The Mixed- Mode Fracture Strength Of The Cu/Si Interface For Tsv Structures, Chenglin Wu, Congjie Wei, Yanxiao Li Jan 2019

In Situ Mechanical Characterization Of The Mixed- Mode Fracture Strength Of The Cu/Si Interface For Tsv Structures, Chenglin Wu, Congjie Wei, Yanxiao Li

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

In situ nanoindentation experiments have been widely adopted to characterize material behaviors of microelectronic devices. This work introduces the latest developments of nanoindentation experiments in the characterization of nonlinear material properties of 3D integrated microelectronic devices using the through-silicon via (TSV) technique. The elastic, plastic, and interfacial fracture behavior of the copper via and matrix via interface were characterized using small-scale specimens prepared with a focused ion beam (FIB) and nanoindentation experiments. A brittle interfacial fracture was found at the Cu/Si interface under mixed-mode loading with a phase angle ranging from 16.7° to 83.7°. The mixed-mode fracture ...


Hemodynamics And Wall Mechanics After Surgical Repair Of Aortic Arch: Implication For Better Clinical Decisions, Siyeong Ju, Ibrahim Abdullah, Shengmao Lin, Linxia Gu Jan 2019

Hemodynamics And Wall Mechanics After Surgical Repair Of Aortic Arch: Implication For Better Clinical Decisions, Siyeong Ju, Ibrahim Abdullah, Shengmao Lin, Linxia Gu

Mechanical & Materials Engineering Faculty Publications

Graft repair of aortic coarctation is commonly used to mimic the physiological aortic arch shape and function. Various graft materials and shapes have been adopted for the surgery. The goal of this work is to quantitatively assess the impact of graft materials and shapes in the hemodynamics and wall mechanics of the restored aortic arch and its correlation with clinical outcomes. A three-dimensional aortic arch model was reconstructed from magnetic resonance images. The fluid–structure interaction (FSI) analysis was performed to characterize the hemodynamics and solid wall mechanics of the repaired aortic arch. Two graft shapes (i.e., a half-moon ...


Predictive Peridynamic 3d Models Of Pitting Corrosion In Stainless Steel With Formation Of Lacy Covers, Siavash Jafarzadeh, Florin Bobaru, Ziguang Chen Jan 2019

Predictive Peridynamic 3d Models Of Pitting Corrosion In Stainless Steel With Formation Of Lacy Covers, Siavash Jafarzadeh, Florin Bobaru, Ziguang Chen

Mechanical & Materials Engineering Faculty Publications

In this work, the peridynamic corrosion model is used for 3D simulation of pitting corrosion in stainless steel. Models for passivation and salt layer formation are employed to predict detailed characteristics of pit growth kinetic in stainless steels, such as lacy cover formation on top of the pit, and the diffusion-controlled regime at the pit bottom. The model is validated against an experimentally grown pit on 316L stainless steel in NaCl solution. Lacy covers in this model are formed autonomously during the simulation process. They are remarkably similar to the covers observed on top of the real pits.


Predictive Peridynamic 3d Models Of Pitting Corrosion In Stainless Steel With Formation Of Lacy Covers, Siavash Jafarzadeh, Florin Bobaru, Ziguang Chen Jan 2019

Predictive Peridynamic 3d Models Of Pitting Corrosion In Stainless Steel With Formation Of Lacy Covers, Siavash Jafarzadeh, Florin Bobaru, Ziguang Chen

Mechanical & Materials Engineering Faculty Publications

In this work, the peridynamic corrosion model is used for 3D simulation of pitting corrosion in stainless steel. Models for passivation and salt layer formation are employed to predict detailed characteristics of pit growth kinetic in stainless steels, such as lacy cover formation on top of the pit, and the diffusion-controlled regime at the pit bottom. The model is validated against an experimentally grown pit on 316L stainless steel in NaCl solution. Lacy covers in this model are formed autonomously during the simulation process. They are remarkably similar to the covers observed on top of the real pits.


Glocal Integrity In 420 Stainless Steel By Asynchronous Laser Processing, Michael P. Sealy, Haitham Hadidi, Cody Kanger, X. L. Yan, Bai Cui, J. A. Mcgeough Jan 2019

Glocal Integrity In 420 Stainless Steel By Asynchronous Laser Processing, Michael P. Sealy, Haitham Hadidi, Cody Kanger, X. L. Yan, Bai Cui, J. A. Mcgeough

Mechanical & Materials Engineering Faculty Publications

Cold working individual layers during additive manufacturing (AM) by mechanical surface treatments, such as peening, effectively “prints” an aggregate surface integrity that is referred to as a glocal (i.e., local with global implications) integrity. Printing a complex, pre-designed glocal integrity throughout the build volume is a feasible approach to improve functional performance while mitigating distortion. However, coupling peening with AM introduces new manufacturing challenges, namely thermal cancellation, whereby heat relaxes favorable residual stresses and work hardening when printing on a peened layer. Thus, this work investigates glocal integrity formation from cyclically coupling LENS® with laser peening on 420 stainless ...


Liquid Metal-Elastomer Soft Composites With Independently Controllable And Highly Tunable Droplet Size And Volume Loading, Ravi Tutika, Steven Kmiec, A. B. M. Tahidul Haque, Steve W. Martin, Michael D. Bartlett Jan 2019

Liquid Metal-Elastomer Soft Composites With Independently Controllable And Highly Tunable Droplet Size And Volume Loading, Ravi Tutika, Steven Kmiec, A. B. M. Tahidul Haque, Steve W. Martin, Michael D. Bartlett

Materials Science and Engineering Publications

Soft composites are critical for soft and flexible materials in energy harvesting, actuators, and multifunctional devices. One emerging approach to create multifunctional composites is through the incorporation of liquid metal (LM) droplets such as eutectic gallium indium (EGaIn) in highly deformable elastomers. The microstructure of such systems is critical to their performance, however, current materials lack control of particle size at diverse volume loadings. Here, we present a fabrication approach to create liquid metal-elastomer composites with independently controllable and highly tunable droplet size (100 nm ≦ D ≦ 80 μm) and volume loading (0 ≦ φ ≦ 80%). This is achieved through a combination ...


Life Cycle Cost Evaluation Strategy For High Performance Control Systems Under Uncertainties, Laura Micheli, Ling Cao, Simon Laflamme, Alice Alipour Jan 2019

Life Cycle Cost Evaluation Strategy For High Performance Control Systems Under Uncertainties, Laura Micheli, Ling Cao, Simon Laflamme, Alice Alipour

Civil, Construction and Environmental Engineering Publications

High-performance control systems (HPCSs), including active, hybrid, and semi-active control strategies, can perform over a wide excitation bandwidth and are therefore good candidates for multi-hazard mitigation. However, the number of HPCS applications in the field is very limited. This is likely due the perceived high costs of installation, maintenance, possible malfunction, and lack of tools to financially justify their implementation. Such financial justifications could be conducted through life cycle cost (LCC) analysis, but would result in a computationally demanding task due to the very large number of simulations required given the large number of uncertainties. In this paper, two sets ...


An Integrated Framework For Solid Modeling And Structural Analysis Of Layered Composites With Defects, Onur Rauf Bingol, Bryan Schiefelbein, Robert J. Grandin, Stephen D. Holland, Adarsh Krishnamurthy Jan 2019

An Integrated Framework For Solid Modeling And Structural Analysis Of Layered Composites With Defects, Onur Rauf Bingol, Bryan Schiefelbein, Robert J. Grandin, Stephen D. Holland, Adarsh Krishnamurthy

Center for Nondestructive Evaluation Publications

Laminated fiber-reinforced polymer (FRP) composites are widely used in aerospace and automotive industries due to their combined properties of high strength and low weight. However, owing to their complex structure, it is difficult to assess the impact of manufacturing defects and service damage on their residual life. Non-destructive evaluation (NDE) of composites using ultrasonic testing (UT) can identify the presence of defects. However, manually incorporating the damage in a CAD model of a multi-layered composite structure and evaluating its structural integrity is a tedious process. We have developed an automated framework to create a layered 3D CAD model of a ...


Technological Cooperation Network In Biotechnology Analysis Of Patents With Brazil As The Priority Country, Cristiano Goncalves Pereira, Rodrigo Ribeiro Da Silva, Joao Ricardo Lavoie, Geciane Silveira Porto Jan 2019

Technological Cooperation Network In Biotechnology Analysis Of Patents With Brazil As The Priority Country, Cristiano Goncalves Pereira, Rodrigo Ribeiro Da Silva, Joao Ricardo Lavoie, Geciane Silveira Porto

Engineering and Technology Management Faculty Publications and Presentations

Purpose – The establishment of partnerships between companies, government and universities aims to enhance innovation and the technological development of institutions. The biotechnology sector has grown in recent years mainly driven by its cooperative business model. Compared to other countries, this sector is slowly advancing in Brazil, with delays in science, technology and innovation, especially in the private sector. This paper aims to examine, through social network analysis, the collaborative networks between institutions that filed patents in biotechnology – medicinal preparations from plants – whose inventions had Brazil as the priority country. Design/methodology/approach – The study of technological cooperation using patent documents ...


Shape-Design For Stabilizing Micro-Particles In Inertial Microfluidic Flows, Aditya Kommajosula, Daniel Stoecklein, Dino Di Carlo, Baskar Ganapathysubramanian Jan 2019

Shape-Design For Stabilizing Micro-Particles In Inertial Microfluidic Flows, Aditya Kommajosula, Daniel Stoecklein, Dino Di Carlo, Baskar Ganapathysubramanian

Mechanical Engineering Publications

Design of microparticles which stabilize at the centerline of a channel flow when part of a dilute suspension is examined numerically for moderate Reynolds numbers (10≤Re≤80). Stability metrics for particles with arbitrary shapes are formulated based on linear-stability theory. Particle shape is parametrized by a compact, Non-Uniform Rational B-Spline (NURBS)-based representation. Shape-design is posed as an optimization problem and solved using adaptive Bayesian optimization. We focus on designing particles for maximal stability at the channel-centerline robust to perturbations. Our results indicate that centerline-focusing particles are families of characteristic "fish"/"bottle"/"dumbbell"-like shapes, exhibiting fore-aft asymmetry. A ...


Efficient Solar-To-Thermal Energy Conversion And Storage With High-Thermal-Conductivity And Form-Stabilized Phase Change Composite Based On Wood-Derived Scaffolds, Bolin Chen, Meng Han, Bowei Zhang, Gaoyuan Ouyang, Behrouz Shafei, Xinwei Wang, Shan Hu Jan 2019

Efficient Solar-To-Thermal Energy Conversion And Storage With High-Thermal-Conductivity And Form-Stabilized Phase Change Composite Based On Wood-Derived Scaffolds, Bolin Chen, Meng Han, Bowei Zhang, Gaoyuan Ouyang, Behrouz Shafei, Xinwei Wang, Shan Hu

Mechanical Engineering Publications

Solar-to-thermal energy conversion is one of the most efficient ways to harvest solar energy. In this study, a novel phase change composite with porous carbon monolith derived from natural wood is fabricated to harvest solar irradiation and store it as thermal energy. Organic phase change material n-octadecane is physically adsorbed inside the porous structure of the carbonized wood, and a thin graphite coating encapsulates the exterior of the wood structure to further prevent n-octadecane leakage. The carbonized wood scaffold and the graphite coating not only stabilize the form of the n-octadecane during phase change, but also enhance its thermal conductivity ...


Predicting Dynamic Modulus Of Asphalt Mixture Using Data Obtained From Indirect Tension Mode Of Testing, Parnian Ghasemi, Shibin Lin, Derrick K. Rollins, R. Christopher Williams Jan 2019

Predicting Dynamic Modulus Of Asphalt Mixture Using Data Obtained From Indirect Tension Mode Of Testing, Parnian Ghasemi, Shibin Lin, Derrick K. Rollins, R. Christopher Williams

Chemical and Biological Engineering Publications

Understanding stress-strain behavior of asphalt pavement under repetitive traffic loading is of critical importance to predict pavement performance and service life. For viscoelastic materials, the stress-strain relationship can be represented by the dynamic modulus. The dynamic modulus test in indirect tension mode can be used to measure the modulus of each specific layer of asphalt pavements using representative samples. Dynamic modulus is a function of material properties, loading, and environmental conditions. Developing predictive models for dynamic modulus is efficient and cost effective. This article focuses on developing an accurate Finite Element (FE) model using mixture elastic modulus and asphalt binder ...


Unveiling The Operation Mechanism Of Layered Perovskite Solar Cells, Yun Lin, Yanjun Fang, Jingjing Zhao, Yuchuan Shao, Samuel J. Stuard, Masrur Morshed Nahid, Harald Ade, Qi Wang, Jeffrey E. Shield, Ninghao Zhou, Andrew M. Moran, Jinsong Huang Jan 2019

Unveiling The Operation Mechanism Of Layered Perovskite Solar Cells, Yun Lin, Yanjun Fang, Jingjing Zhao, Yuchuan Shao, Samuel J. Stuard, Masrur Morshed Nahid, Harald Ade, Qi Wang, Jeffrey E. Shield, Ninghao Zhou, Andrew M. Moran, Jinsong Huang

Mechanical & Materials Engineering Faculty Publications

Layered perovskites have been shown to improve the stability of perovskite solar cells while its operation mechanism remains unclear. Here we investigate the process for the conversion of light to electrical current in high performance layered perovskite solar cells by examining its real morphology. The layered perovskite films in this study are found to be a mixture of layered and three dimensional (3D)-like phases with phase separations at micrometer and nanometer scale in both vertical and lateral directions. This phase separation is explained by the surface initiated crystallization process and the competition of the crystallization between 3D-like and layered ...


Interface Facilitated Reorientation Of Mg Nanolayers In Mg-Nb Nanolaminates, Y. Chen, Mingyu Gong, N. A. Mara, Jian Wang Jan 2019

Interface Facilitated Reorientation Of Mg Nanolayers In Mg-Nb Nanolaminates, Y. Chen, Mingyu Gong, N. A. Mara, Jian Wang

Mechanical & Materials Engineering Faculty Publications

Mg/Nb nanolaminates synthesized through vapor deposition techniques exhibit high flow strength without conventional twinning in Mg. In this work, we investigated the influence of laminated microstructures on deformation mechanisms of Mg nanolayers. Using molecular dynamics simulations, we explored that (0001)-oriented Mg layers transform or re-orient to {10¯10}-oriented Mg layers through nucleation and growth of {10¯12} twins by atomic shuffling, instead of conventional {10¯12} twinning shear. Such a reorientation accommodates in-plane compressive strain and out-of-plane tensile strain when Mg/Nb laminates are subjected to compression parallel to the Mg/Nb interfaces. The nucleation of {10 ...