Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering Science and Materials

Detection And Identification Of Disturbances By Spectral Analysis Of Structure-Borne Noise During The Production Of A Sealing Seam, Felix Kruppa, Lars Meisenbach, Berend Oberdorfer Dr.-Ing., Bernd Wilke Prof. Dr.-Ing. Apr 2022

Detection And Identification Of Disturbances By Spectral Analysis Of Structure-Borne Noise During The Production Of A Sealing Seam, Felix Kruppa, Lars Meisenbach, Berend Oberdorfer Dr.-Ing., Bernd Wilke Prof. Dr.-Ing.

Journal of Applied Packaging Research

When sealing, disturbances or errors can occur that impair the quality of the sealing seam and, in the worst case, lead to leaks. It is therefore important to identify and eliminate defective packages during production and to minimize the elimination by readjusting machine parameters. The aim of this article is the clear identification of seam quality problems on a vertical forming, filling and sealing machine SVE2520 by evaluating process parameters during the manufacturing process. For this purpose, the structure-borne noise is measured for each seal in order to identify not-usual curves. These not-usual curves are related to different disturbances or …


Predictive Modeling Of Oxygen Transmission Through Micro-Perforations For Packaging Applications, Ayman Abdellatief, Bruce A. Welt, Jason Butler, Eric Mclamore, Arthur Teixeira, Sanjay Shukla May 2015

Predictive Modeling Of Oxygen Transmission Through Micro-Perforations For Packaging Applications, Ayman Abdellatief, Bruce A. Welt, Jason Butler, Eric Mclamore, Arthur Teixeira, Sanjay Shukla

Journal of Applied Packaging Research

Methods for creating precise perforations in respiring produce packaging are being increasingly adopted. Knowledge of oxygen transfer through perforated packaging and oxygen distribution in packages is necessary for successful packaging design of fresh produce. An approach to modeling perforated packaging performance was developed using a cylindrical chamber with precision perforations using Fick’s second law. The model was simulated using two techniques including Finite Element Method (FEM) using commercially available software and Finite Volume Method (FVM) through programming. Perforations were approximated as a source term in the second method. Both simulation techniques showed trends similar to experimental data.