Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 60 of 112

Full-Text Articles in Engineering Science and Materials

Stm Investigation Of Oxygen Reduction Reaction On Solid Interface In Fuel Cell, Zhen-Feng Cai, Bing Sun, Wen-Jie Jiang, Ting Chen, Dong Wang, Li-Jun Wan Dec 2016

Stm Investigation Of Oxygen Reduction Reaction On Solid Interface In Fuel Cell, Zhen-Feng Cai, Bing Sun, Wen-Jie Jiang, Ting Chen, Dong Wang, Li-Jun Wan

Journal of Electrochemistry

An electrocatalyst for oxygen reduction reaction (ORR) is an important component for fuel cells. An investigation at interfacial electrochemical reactions toward ORR at a molecular scale benefits mechanistic understanding as well as rational design of catalysts. Scanning tunneling microscopy (STM) has been proven to be a powerful tool to monitor chemical reactions and to provide in-situ information about the interfacial electrochemical reactions at a molecular level. This review summarizes the recent STM studies in monitoring the interface processes such as morphological changes, molecular changes, reaction intermediates, and oxidation products. The prospects of future development in this field are outlined.


Synthesis Of Ultrathin Co3O4 Nanoflakes Film Material For Electrochemical Sensing, Hui-Juan Wang Dec 2016

Synthesis Of Ultrathin Co3O4 Nanoflakes Film Material For Electrochemical Sensing, Hui-Juan Wang

Journal of Electrochemistry

Ultrathin cobalt oxide (Co3O4 ) nanoflakes film material was synthesized by using an electro-deposited cobalt layer as a raw material through a simple oxidation method and followed by a heat treatment at 350 oC. The physical characterizations of the Co3O4 nanoflakes film were performed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) technologies, and the electrochemical activity was measured by cyclic voltammetry (CV). As a promising material for electrochemical sensing, the as-synthesized ultrathin Co3O4 nanoflakes film material exhibited excellent electrochemical activity for H2O …


The Study Of Dynamical Electrochemical Impedance Spectroscopy For Oxygen Reduction Reaction On Pt/C Catalyst, Kun-Ming Shi, Jian-Wei Guo, Jia Wang Oct 2016

The Study Of Dynamical Electrochemical Impedance Spectroscopy For Oxygen Reduction Reaction On Pt/C Catalyst, Kun-Ming Shi, Jian-Wei Guo, Jia Wang

Journal of Electrochemistry

With joint techniques of rotating disc electrode(RDE) and electrochemical impedance spectroscopy(EIS), and further establishment on equivalent circuit model, this paper studied oxygen reduction reaction(ORR) on commercial Pt/C catalyst in acid medium. Our results found that the dynamical interface on Pt/C consists of two independent processes: 1) the PtO reduction from Pt surface, 2) the new PtO formation from ORR, thus providing key clues for catalyst stability and activity. This also implied that the dynamical interface facilitates reconstruction for porous electrode, and matches with mass transfer. One important issue is discovered that at high overpotential, the high reaction rate for ORR …


Electrochemical H2O2Sensor Based On The Co-Immobilization Of Phosphmolybdic Acid And Graphene On Pedot Film Electrode With Nafion, Hao-Xian Zhou, Jun-Ming Zhang, Zhi-Yu Qu, Pan-Yu Zhang, You-Jun Fan Feb 2016

Electrochemical H2O2Sensor Based On The Co-Immobilization Of Phosphmolybdic Acid And Graphene On Pedot Film Electrode With Nafion, Hao-Xian Zhou, Jun-Ming Zhang, Zhi-Yu Qu, Pan-Yu Zhang, You-Jun Fan

Journal of Electrochemistry

With a glassy carbon electrode (GCE) as the substrate, the poly(3,4-ethylenedioxythiophene) (PEDOT) film electrode was prepared through the electrochemical polymerization method, then a novel non-enzymatic electrochemical H2O2 sensor was fabricated by co-immobilizing phosphomolybdic acid and graphene with Nafion on the PEDOT/GCE electrode. The modified electrodes were characterized by scanning electron microscopy (SEM), while the responsive properties of the sensor to H2O2 were investigated by cyclic voltammetry and chronoamperometry. The results demonstrated that, under the optimized conditions, the sensor exhibited good electrocatalytic performance for H2O2 reduction. The current response of the sensor …


Electrochemical Detection Of Hydrogen Peroxide At Aunps Modified Electrode Using P-Hydroxyphenylboronic Acid As A Precursor, Chun-Yan Wang, Xiao-Qiu Liu, Ying-Xin Qi Feb 2016

Electrochemical Detection Of Hydrogen Peroxide At Aunps Modified Electrode Using P-Hydroxyphenylboronic Acid As A Precursor, Chun-Yan Wang, Xiao-Qiu Liu, Ying-Xin Qi

Journal of Electrochemistry

We developed a new method for electrochemical detection of hydrogen peroxide (H2O2) based on boronate oxidation of p-hydroxyphenylboronic acid. This method using p-aminophenol which is produced from the reaction of H2O2 and p-aminophenylboronic acid as a well electrochemical probe, combined with a gold nanoparticles (AuNPs) modified electrode for an indirect detection of H2O2. Because of the large surface area and enhanced electrocatalytic behavior by the AuNPs modified electrode, the detection sensitivity was improved. The method could detect H2O2 in the concentration range of …


Fabrication Of Riboflavin Electrochemical Sensor Based On Au Nanoparticles/Polydopamine/Carbon Nanotubes Modified Glassy Carbon Electrode, Hua-Ping Peng, Mei-Ling Yu, Xin Liu, Pan Liu, Wei Chen, Ai-Lin Liu, Xin-Hua Lin Feb 2016

Fabrication Of Riboflavin Electrochemical Sensor Based On Au Nanoparticles/Polydopamine/Carbon Nanotubes Modified Glassy Carbon Electrode, Hua-Ping Peng, Mei-Ling Yu, Xin Liu, Pan Liu, Wei Chen, Ai-Lin Liu, Xin-Hua Lin

Journal of Electrochemistry

A novel electrochemical platform for the high sensitivity detection of riboflavin was constructed by Au nanoparticles/polydopamine/carbon nanotubes (Au-PDA-MWCNTs) nanocomposite modified glassy carbon electrode. The Au-PDA-MWCNTs nanocomposite was synthesized by in situ reduction method. The characteristics of the as-prepared Au-PDA-MWCNTs nanocomposite modified electrodes were investigated by using UV-Vis spectroscopy, scanning electron microscopy (SEM) and electrochemical methods. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to study the electrochemical behavior of riboflavin (RF) at Au-PDA-MWCNTs nanocomposite modified electrodes. The results demonstrated that the present electrochemical sensor exhibited a wide linear range from 5×10-9 mol•L-1to 1×10-5 mol•L …


Application Of Pd/Graphene Modified Electrode In The Detection Of 4-Chlorophenol, Peng Shi, Bo-Xuan Wang, Quan-Lin Song, Hui Wang, Xin Liu, Zhao-Yong Bian Oct 2015

Application Of Pd/Graphene Modified Electrode In The Detection Of 4-Chlorophenol, Peng Shi, Bo-Xuan Wang, Quan-Lin Song, Hui Wang, Xin Liu, Zhao-Yong Bian

Journal of Electrochemistry

The Pd/graphene composites were synthesized by a modified Hummers method and NaBH4 reduction process, and then were characterized using XRD, SEM, XPS, and TEM. The Pd/graphene modified glassy carbon electrode (Pd/graphene/GCE) was prepared based on this method. Cyclic voltammetry was used to study the optimum operation conditions for the 4-chlorophenol detection. It was shown that the surface of the graphene was smooth and Pd nanoparticles were uniformly dispersed on graphene. The average particle size was calculated to be 6.5 ± 0.05 nm. These nanoparticles exhibited high catalytic activity and sensitivity toward chlorophenols. PBS with a concentration of 0.1 mol?L-1 at …


Effect Of Adsorption Potential On Co Oxidation At Au@Pt Nanoparticles Electrodes, A Surface Enhanced Raman Spectroscopic Study, Pu Zhang, Yi Wei, Yong-Li Zheng, Yan-Xia Chen, Zhong-Qun Tian Aug 2015

Effect Of Adsorption Potential On Co Oxidation At Au@Pt Nanoparticles Electrodes, A Surface Enhanced Raman Spectroscopic Study, Pu Zhang, Yi Wei, Yong-Li Zheng, Yan-Xia Chen, Zhong-Qun Tian

Journal of Electrochemistry

The adsorption/oxidation of CO on the 55 nm Au@0.7 nm Pt nanoparticles electrode in both potentiodynamic and potentiostatic modes were investigated by surface enhanced Raman spectroscopy in a thin layer electrochemical flow cell under controlled mass transport, with the aim of clarifying the origin CO oxidation at lower electrode potentials (in current pre-wave region of corresponding cyclic voltammograms). Our results demonstrated that the CO oxidation kinetics differed significantly from the three kinds of different CO adsorption history, with almost no CO oxidation current in the pre-peak potential region after 0.35 VRHE CO adsorption with or without subsequent holding the …


Broadband Sum-Frequency Generation Spectroscopic Invstigations Of Thiocyanate On Polycrystalline Au Electrode In Alkaline Solutions, Mei Xu, Jing-Jing Wang, Zhi-Chao Huangfu, Ng Ying Wa, Yu-Han He, Zhao-Hui Wang Aug 2015

Broadband Sum-Frequency Generation Spectroscopic Invstigations Of Thiocyanate On Polycrystalline Au Electrode In Alkaline Solutions, Mei Xu, Jing-Jing Wang, Zhi-Chao Huangfu, Ng Ying Wa, Yu-Han He, Zhao-Hui Wang

Journal of Electrochemistry

Broadband sum frequency generation (BB-SFG) spectroscopy has been used to investigating the potential-dependent adsorption behaviors of thiocyanate ions on polycrystalline Au electrode in alkaline solutions. During the positive scan, a change in the Stark slope (dωC-N/dE) for C—N stretching mode can be observed in the range of -1.1 V ~ 0.2 V (vs. SCE), which implies that the orientation of adsorbed thiocyanate ions at Au electrode surface changes from N-bound (dωC-N/dE=45 cm-1·V-1) form to S-bound (dωC-N/dE = 16.2 cm-1·V-1 …


A Novel Nitrite Sensing Electrode Based On Au/Fe3O4/Chitosan Nanocomposite, Ying Dong, Yong Wang, Huan-Huan Xing, Jian-Ying Qu Feb 2015

A Novel Nitrite Sensing Electrode Based On Au/Fe3O4/Chitosan Nanocomposite, Ying Dong, Yong Wang, Huan-Huan Xing, Jian-Ying Qu

Journal of Electrochemistry

A novel nitrite sensing electrode based on gold nanoparticles and iron oxides (Fe3O4) magnetic nanoparticles was fabricated with chitosan as the protective film on glassy carbon matrix. Experiment results showed that the sensing electrode exhibited good electrocatalytic activity toward oxidation of nitrite, and the oxidation peak current increased linearly with the concentration of nitrite varying from 5.0×10-6 to 2.0×10-3 mol·L-1 (R=0.9996) with a detection limit of 7.1×10-7 mol·L-1 (S/N=3). The sensing electrode exhibited good sensitivity, selectivity and repeatability.


Electrochemiluminescence Assay Based On Bipolar Electrode For Bioanalysis, Mei-Sheng Wu, Jing-Juan Xu, Hong-Yuan Chen Feb 2015

Electrochemiluminescence Assay Based On Bipolar Electrode For Bioanalysis, Mei-Sheng Wu, Jing-Juan Xu, Hong-Yuan Chen

Journal of Electrochemistry

Bipolar electrodes (BPEs) are electronic conductors which are usually embedded into microchannels. The potential difference at the BPE/solution interface is obtained by applying a voltage at the two ends of the microchannel. When it reaches a critical value, the redox reaction takes place at both poles of the BPE simultaneously. Compared with other detection methods, the electrochemiluminescence (ECL) platform based on BPE possesses the advantages of concentration enrichment, high sensitivity, low cost, portable sensor system, no need for a light source, which is quite suitable for bioanalysis. This paper reviews the ECL-BPE strategy for bioanalysis and proposes the future research …


Electrochemical Detection Of L-Cysteine Based On Iron Phthalocyanine/Nitrogen-Doped Graphene Modified Electrodes, Jing-Jing Xiao, Hui-Ying Xu, Li Xu, Bao-Hong Liu Feb 2015

Electrochemical Detection Of L-Cysteine Based On Iron Phthalocyanine/Nitrogen-Doped Graphene Modified Electrodes, Jing-Jing Xiao, Hui-Ying Xu, Li Xu, Bao-Hong Liu

Journal of Electrochemistry

In this study, we report a facile method to develop FePc/N-G hybrid modified electrode for the detection of L-cysteine. The electrochemical sensor was characterized by cyclic voltammetry and amperometric response. The sensor exhibited a wider linear range with rapid response which has outperformed pure FePc/GCE, highlighting the important role of nitrogen doped graphene as substrate for improving the electrochemical response property.


Direct Electrochemistry And Glucose Biosensing Of Glucose Oxidase-Gold Nanoparticles Composite Synthesized By Enzyme Method, Fang He, Xiao-Li Qin, Ying-Chun Fu, Chao Chen, Qing-Ji Xie, Shou-Zhuo Yao Dec 2014

Direct Electrochemistry And Glucose Biosensing Of Glucose Oxidase-Gold Nanoparticles Composite Synthesized By Enzyme Method, Fang He, Xiao-Li Qin, Ying-Chun Fu, Chao Chen, Qing-Ji Xie, Shou-Zhuo Yao

Journal of Electrochemistry

Glucose oxidase (GOx)-gold nanoparticles (AuNPs) composite was synthesized by the one-pot enzyme reaction in the mixture solution of NaAuCl4, GOx and glucose, and a Nafion/GOx-AuNPs/glassy carbon electrode was fabricated by the cast-coating method to examine the direct electrochemistry of GOx and the biosensing performance on this electrode. Such a GOx-AuNPs composite showed good direct-electrochemistry activity and bioactivity of GOx, probably because the enzyme-mediated AuNPs are close to the redox active centers of GOx. This enzyme electrode exhibited a linear amperometric response to glucose concentration (0.54 mmol·L-1) at -0.4 V (vs. SCE), and a detection limit of …


One-Step Synthesis Of Pani/Nihcf Hybrid Film Using Unipolar Pulse Electrodeposition And Its Electrocatalytic Reduction Performance For H2O2 Detection, Sen-Liang Liao, Xiu-Min Li, Xiao-Gang Hao, Yan-Hong Wang, Chun-Feng Xue, Yong-Hong Wang Dec 2014

One-Step Synthesis Of Pani/Nihcf Hybrid Film Using Unipolar Pulse Electrodeposition And Its Electrocatalytic Reduction Performance For H2O2 Detection, Sen-Liang Liao, Xiu-Min Li, Xiao-Gang Hao, Yan-Hong Wang, Chun-Feng Xue, Yong-Hong Wang

Journal of Electrochemistry

Organic–inorganic hybrid films composed of polyaniline/nickel hexacyanoferrate (PANI/NiHCF) were fabricated on platinum substrates using unipolar pulse one-step electrodeposition. The deposition mechanism of hybrid film was proposed: Due to high potential of unipolar pulse electrodeposition, which avoided the reduction of Fe(CN)63-, the films with high electrocatalytic property and “insoluble” form of NiHCF were achieved. The morphology and composition of PANI/NiHCF hybrid film were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FT-IR). The effect of pulse potential on the electrochemical performance of hybrid film was investigated in detail. Results showed that …


Electrochemical And Spectroscopic Studies Of Ethanol Oxidation On Nano-Cubic Pt Modified By Tin Adatoms, Lu Rao, Bin-Wei Zhang, Yan-Yan Li, Yan-Xia Jiang, Shi-Gang Sun Oct 2014

Electrochemical And Spectroscopic Studies Of Ethanol Oxidation On Nano-Cubic Pt Modified By Tin Adatoms, Lu Rao, Bin-Wei Zhang, Yan-Yan Li, Yan-Xia Jiang, Shi-Gang Sun

Journal of Electrochemistry

The nano-cubic Pt modified by tin (Sn) was synthesized and used to investigate the role of this adatom played in the ethanol oxidation. The onset potential of ethanol oxidation was significantly shifted negatively which can be forward about 300 mV when the coverage of Sn (θSn)was 0.9. The electrtochemical in situ FTIR result demonstrated that the amount of CO2 increased first, and then decreased with θSn increased, and reached the maximun when θSn was 0.38. Furthermore, the formation of acetic acid could be observed at very low potential (-0.05 V) after modifying Sn adatom, and the amount of acetic acid …


High Sensitive Detection Of Cd(Ii) And Pb(Ii) Based On Antimony-Film Covered Pencil Core Electrodes, Shan Chen, Zhao-Yan Zheng, Yi-Min Fang, Li-Qing Zheng, Jian-Jun Sun Aug 2014

High Sensitive Detection Of Cd(Ii) And Pb(Ii) Based On Antimony-Film Covered Pencil Core Electrodes, Shan Chen, Zhao-Yan Zheng, Yi-Min Fang, Li-Qing Zheng, Jian-Jun Sun

Journal of Electrochemistry

In this paper, a pencil core was used as the substrate for an antimony-film electrode for simultaneous detection of Cd(II) and Pb(II) by square-wave anodic stripping voltammetry (SWASV). With the deposition time of 180 s, the low limit of detection (LOD) for the electrode was determined to be 0.075 ?g?L-1 for Cd(II), while 0.13 ?g?L-1 for Pb(II) with good reproducibility in low pH solutions (pH = 2). The results show a much lower LOD than that of bismuth-film pencil core electrode. Finally, this antimony-film electrode was successfully applied to determine Cd(II) and Pb(II) in tap water.


A Sensitive And Label-Free Electrochemical Aptasensor Based On Signal Amplification Of Carbon Nanotubes, Chun-Yan Deng, Hui-Min Fan, Juan Xiang, Yuan-Jian Li Aug 2014

A Sensitive And Label-Free Electrochemical Aptasensor Based On Signal Amplification Of Carbon Nanotubes, Chun-Yan Deng, Hui-Min Fan, Juan Xiang, Yuan-Jian Li

Journal of Electrochemistry

A label-free electrochemical sensing electrode for highly sensitive detection of adenosine was constructed based on the signal amplification of carbon nanotubes (CNTs). The change in the interfacial feature of the modified electrode was characterized by electrochemical impedance spectroscopy. Using [Ru(NH3)6]3+ as the signaling moiety, adenosine with concentrations as low as 0.027 nmol·L-1 can be selectively detected. Additionally, the fabrication of this present aptasensor was simple, time-saving and cost-effective. Compared with other reported aptasensors, the proposed aptasensor had advantages of excellent sensitivity, selectivity and simplicity, which plays a potential role in development of aptasensor.


Investigation Of The Dynamics Of Photocarriers During Photoelectrochemical Water Splitting By Combination Of Photoelectrochemistry And Transient Absorption Spectroscopy, Wen-Hua Leng Aug 2014

Investigation Of The Dynamics Of Photocarriers During Photoelectrochemical Water Splitting By Combination Of Photoelectrochemistry And Transient Absorption Spectroscopy, Wen-Hua Leng

Journal of Electrochemistry

Semiconductor photoelectrochemical hydrogen production is an important and promising technology for utilizing solar energy. The efficiency of hydrogen production depends on the efficiencies of separation and transport of photo-generated carriers. A deep understanding of the behavior of these processes has guiding significance for designing efficient solar hydrogen device. photoelectrochemical and transient absorption spectroscopy methods are powerful tool for studying the microscopic dynamics and mechanism of photocatalytic reaction. This review describes the part of the latest results of the author regarding the semiconductor photoelectrochemical hydrogen production obtained by these methods,and the problems and future research priorities in this field are proposed.


Electrochemical And Surface Enhanced Raman Spectroscopic Studies Of Benzimidazole On Nickel Electrode, Ping-Jie Wei, Ya-Xian Yuan, Min-Min Xu, Jian-Lin Yao, Ren-Ao Gu Aug 2014

Electrochemical And Surface Enhanced Raman Spectroscopic Studies Of Benzimidazole On Nickel Electrode, Ping-Jie Wei, Ya-Xian Yuan, Min-Min Xu, Jian-Lin Yao, Ren-Ao Gu

Journal of Electrochemistry

By measuring cyclic voltammograms and polarization curves, the inhibition effects of benzimidazole (BMIH) concentration in acetonitrile system on a nickel electrode were investigated. It was found that the oxidation and the corrosion potentials shifted positively, and the oxidation current decreased with the increase in the concentration of BIMH. Potential dependent adsorption and film formation behavior of BMIH on the nickel electrode were investigated by in situ SERS spectroscopy. With the potential moving from negative direction to positive direction, the complexes made of BIMH and nickel were formed, preventing the nickel electrode from corrosion. In addition, the 0.001 mol·L-1 of …


Surface Enhanced Raman Spectroscopic Studies Of Pyridine Adsorbed On Ti/Au@Sio2 Film Electrode, Min-Min Xu, Ke Liu, Qing-Hua Guo, Jian-Lin Yao Jun 2014

Surface Enhanced Raman Spectroscopic Studies Of Pyridine Adsorbed On Ti/Au@Sio2 Film Electrode, Min-Min Xu, Ke Liu, Qing-Hua Guo, Jian-Lin Yao

Journal of Electrochemistry

This study was performed based on shell-isolated nanoparticles-enhanced Raman spectroscopy (SHINERS) technology. The Au@SiO2 nanoparticles were prepared and characterized by TEM and cyclic voltammetry. It was shown that the shell of SiO2 was compact. The high quality signal measured by surface enhanced Raman spectroscopy (SERS) was obtained from the adsorbed pyridine on Ti/Au@SiO2 electrode. The origin of the SERS signals was further confirmed by testing Pt and Ni electrodes. In addition, potential dependent adsorption behavior was investigated. It was found that pyridine was adsorbed parallel on the surface from -0.1 V to -0.6 V, and converted to …


Horseradish Peroxidase-Attapulgite Clay Nanocomposites: Fabrication And Application To Sensing The Extracellular H2O2 Released From Cells, Ping Wu, Chen-Xin Cai Jun 2014

Horseradish Peroxidase-Attapulgite Clay Nanocomposites: Fabrication And Application To Sensing The Extracellular H2O2 Released From Cells, Ping Wu, Chen-Xin Cai

Journal of Electrochemistry

The nanostructured attapulgite clay was employed as a support matrix for immobilizing horseradish peroxidase (HRP). FTIR and electrochemical methods demonstrated that HRP had been effectively assembled on attapulgite surface with the formation of HRP-attapulgite nanocomposites. The HRP-attapulgite hybrid was deposited on the glassy carbon (GC) electrode forming the HRP-attapulgite/GC electrode. Cyclic voltammetric results showed a pair of well-defined redox peaks, which were ascribed to direct electron transfer (DET) of HRP, with the formal potential E0′ = -335 mV (vs. SCE) in the phosphate buffer solution (PBS, pH 7.0). The dependence of E0′ on solution pH indicated …


23Na Mas Nmr Spectroscopic Study Of Na2Mnpo4F As Cathode Material For Sodium-Ion Battery, Xu Hou, Gui-Ming Zhong, Xiao-Chen Lin, Zi-Geng Liu, Xiao-Biao Wu, Yong Yang Jun 2014

23Na Mas Nmr Spectroscopic Study Of Na2Mnpo4F As Cathode Material For Sodium-Ion Battery, Xu Hou, Gui-Ming Zhong, Xiao-Chen Lin, Zi-Geng Liu, Xiao-Biao Wu, Yong Yang

Journal of Electrochemistry

The Na2MnPO4F is one of the promising cathode materials for the sodium ion batteries. In the paper, we employed the ex situ X-ray diffraction and solid state NMR techniques to study the charge and discharge processes of this material, including the crystal structure and sodium sites changes. The ex situ x-ray diffraction patterns showed that two new diffraction peaks could be observed at 31o and 36o indicating an intermediate phase formed with the extraction of Na+. From the 23Na MAS NMR spectrum of the material, three peaks were seen at -209 ppm,-258 ppm …


Design And Development Of A Novel Glucose Biosensor Based On The Ferrocene-Functionalized Fe3O4 Nanoparticles/Carbon Nanotubes/Chitosan Nanocomposite Film Modified Electrode, Hua-Ping Peng, Dai-Jun Zha, Wei Chen, Ai-Lin Liu, Xin-Hua Lin Feb 2014

Design And Development Of A Novel Glucose Biosensor Based On The Ferrocene-Functionalized Fe3O4 Nanoparticles/Carbon Nanotubes/Chitosan Nanocomposite Film Modified Electrode, Hua-Ping Peng, Dai-Jun Zha, Wei Chen, Ai-Lin Liu, Xin-Hua Lin

Journal of Electrochemistry

A novel platform for the fabrication of glucose biosensor was successfully constructed by entrapping glucose oxidase (GOD) in a ferrocene monocarboxylic acid-aminated Fe3O4 magnetic nanoparticles conjugate (FMC-AFNPs)/chitosan (CS)/multiwall carbon nanotubes (MWNTs) nanocomposite. The formation of FMC-AFNPs could effectively prevent the leakage of ferrocene and retain its electrochemical activity. This GOD/FMC-AFNPs/CS/MWNTs matrix provided a biocompatible microenvironment for retaining the native activity of the immobilized GOD. Moreover, the presence of MWNTs enhanced the charge-transport properties of the composite and facilitated electron transfer between the GOD and the electrode for the electrocatalysis of glucose. Under the optimal conditions the designed …


Applications Of Spectroscopic Ellipsometry In Corrosion Investigation, Ling-Jie Li, Yu-Ling He, Jing-Lei Lei, Sheng Tao Zhang Oct 2013

Applications Of Spectroscopic Ellipsometry In Corrosion Investigation, Ling-Jie Li, Yu-Ling He, Jing-Lei Lei, Sheng Tao Zhang

Journal of Electrochemistry

As a highly-sensitive and non-destructive in situ technique, spectroscopic ellipsometry has been widely applied in corrosion investigation to acquire the dynamic information of the “electrode-medium” interface during corrosion. This paper lays out some representative demonstrations in several established optical models used to interpret data obtained with spectroscopic ellipsometry in corrosion investigation. In addition, the latest trends in development of this technique are analyzed.


Current Development Of Quantum Dots Based Electrochemiluminescence Immunosensors, Ling-Ling Li, Qian Lu, Jun-Jie Zhu Apr 2013

Current Development Of Quantum Dots Based Electrochemiluminescence Immunosensors, Ling-Ling Li, Qian Lu, Jun-Jie Zhu

Journal of Electrochemistry

Electrochemiluminescence exhibits the merits of both luminescence and electrochemistry analysis, and has been extensively employed in biosensors. Quantum dots are considered one of the three main kinds of electrochemiluminescence luminophores due to their unique properties. This paper briefly reviews the classification and signal amplification technology of quantum dots based electrochemiluminescence immunosensors. Future research trends are also suggested.


An In Situ Ftir Spectroelectrochemical Study On Methanol Oxidation At Pt-Mo2c/Gc Catalyst, Hai-Ping Huang, Xi-Yu Yao, Pei-Kang Shen Feb 2013

An In Situ Ftir Spectroelectrochemical Study On Methanol Oxidation At Pt-Mo2c/Gc Catalyst, Hai-Ping Huang, Xi-Yu Yao, Pei-Kang Shen

Journal of Electrochemistry

A 40% Pt on Mo2C/GC catalyst has been prepared by ion exchange method. The mechanism of methanol electrooxidation on Pt-Mo2C/GC and commercial Pt/C catalysts in acidic media was studied by cyclic voltammetry, XRD measurements and in-situ Fourier transform infrared spectroelectrochemistry. The results revealed that the Pt nanoparticles were uniformly dispersed on Mo2C/GC with an average particle size of 3 nm. The cyclic voltammetric and chronopotentiometric experiments indicated that Pt-Mo2C/GC catalyst exhibited a better performance for methanol oxidation than that of Pt/C in acid solution. A negative shift over 90 mV of the onset potential for methanol oxidation was found on …


In Situ Pm-Irras Studies Of A Floating Bilayer Lipid Membrane At Au(111) Electrode Surface, Su Zhangfei, Kycia Annia, Jay Leitch J., Lipkowski Jacek Oct 2012

In Situ Pm-Irras Studies Of A Floating Bilayer Lipid Membrane At Au(111) Electrode Surface, Su Zhangfei, Kycia Annia, Jay Leitch J., Lipkowski Jacek

Journal of Electrochemistry

In situ Polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) was used to study the structure of a DMPC + cholesterol + GM1 floating bilayer lipid membrane (fBLM) at a Au(111) surface. 1-thio-beta-D-glucose (beta-Tg) was self-assembled onto the Au electrode to increase the overall hydrophilicity of the surface. The fBLM was deposited on the beta-Tg self-assembled monolayer (SAM) using a combination of Langmuir-Blodgett/Langmuir-Schaefer (LB/LS) techniques. The carbohydrate headgroups of the GM1 molecules were physically adsorbed to the beta-Tg SAM forming a water rich cushion between the fBLM and the modified gold substrate. The PM-IRRAS spectra indicate that the DMPC molecules within …


Electrochemical Immunosensor Based On Polycalconcarboxylic Acid Modified Electrode For The Determination Of Alpha-Fetoprotein, Xiao Lin, Shao-Huang Weng, Jian-Zhang Zhou, Ai-Lin Liu, Xin-Hua Lin, Yong-Ji You Aug 2012

Electrochemical Immunosensor Based On Polycalconcarboxylic Acid Modified Electrode For The Determination Of Alpha-Fetoprotein, Xiao Lin, Shao-Huang Weng, Jian-Zhang Zhou, Ai-Lin Liu, Xin-Hua Lin, Yong-Ji You

Journal of Electrochemistry

A highly sensitive electrochemical immunosensor based on novel electropolymerized polycalconcarboxylic acid modified electrode (poly-CCA/GC) has been fabricated for the detection of alpha-fetoprotein (AFP). The differences of the poly-CCA/GC electrodes before and after the immobilization of AFP antibody were characterized via scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The immobilization of antibody/antigen/antibody-HRP sandwich was formed on the poly-CCA modified electrode for the determination of special AFP concentrations. The electrochemical signals generated from the HRP which catalyzed the TMB substrate were measured. Experiment results indicated that the developed immunosensor showed a good sensitivity and precision.


Electrochemical Sensing Of Guanine And Adenine Based On The Boron-Doped Carbon Nanotubes Modified Electrode, Ya-Lin Xia, Chun-Yan Deng, Juan Xiang Aug 2012

Electrochemical Sensing Of Guanine And Adenine Based On The Boron-Doped Carbon Nanotubes Modified Electrode, Ya-Lin Xia, Chun-Yan Deng, Juan Xiang

Journal of Electrochemistry

In this work, the boron-doped carbon nanotubes (BCNTs) modified glassy carbon (GC) electrode was simply fabricated, and the electrochemical oxidation behaviors of guanine and adenine at the BCNTs/GC electrode were investigated. Compared with the bare GC and CNTs/GC electrodes, the BCNTs-modified electrode exhibited extraordinary electrocatalytic activity towards the oxidations of guanine and adenine as indicated by the obvious increase in current responses. Moreover, the peak separation between guanine and adenine was large enough for their potential recognition in mixture without any separation or pretreatment. Therefore, the simultaneous determination of guanine and adenine was successfully achieved. The BCNTs/GC electrode showed high …


Detection Of Pml/Rarî± Fusion Gene Using Gold Nanopaticles Modified Electrode By Chronocoulometry, Li-Man Wang, Li-Qing Lin, Shao-Huang Weng, Xin-Hua Lin, Yuan-Zhong Chen Jun 2012

Detection Of Pml/Rarî± Fusion Gene Using Gold Nanopaticles Modified Electrode By Chronocoulometry, Li-Man Wang, Li-Qing Lin, Shao-Huang Weng, Xin-Hua Lin, Yuan-Zhong Chen

Journal of Electrochemistry

potential. The sulfydryl modified probe was immobilized onto surface of gold nanoparticles via Au-S covalent bond and hybridized with complementary target DNA sequences, then the DNA sensor was fabricated for the detection of PML/RARα fusion gene by chronocoulometry in acute promyelocytic leukemia (APL). Scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS) were used to characterize the surface morphology of gold nanoparticles and the constructing process of sensor. With hexaammineruthenium(Ⅲ) chloride (RuHex) as a novel electrochemical indicator, the chronocoulometric DNA biosensor was employed to monitor artificial APL PML/RARα fusion gene fragment.Experimental results showed that the gold nanoparticles amplified the detection …