Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering Science and Materials

In-Situ/Operando57Fe Mössbauer Spectroscopic Technique And Its Applications In Nife-Based Electrocatalysts For Oxygen Evolution Reaction, Jafar Hussain Shah, Qi-Xian Xie, Zhi-Chong Kuang, Ri-Le Ge, Wen-Hui Zhou, Duo-Rong Liu, Alexandre I. Rykov, Xu-Ning Li, Jing-Shan Luo, Jun-Hu Wang Mar 2022

In-Situ/Operando57Fe Mössbauer Spectroscopic Technique And Its Applications In Nife-Based Electrocatalysts For Oxygen Evolution Reaction, Jafar Hussain Shah, Qi-Xian Xie, Zhi-Chong Kuang, Ri-Le Ge, Wen-Hui Zhou, Duo-Rong Liu, Alexandre I. Rykov, Xu-Ning Li, Jing-Shan Luo, Jun-Hu Wang

Journal of Electrochemistry

The development of highly efficient and cost-effective electrocatalysts for the sluggish oxygen evolution reaction (OER) remains a significant barrier to establish effective utilization of renewable energy storage systems and water splitting to produce clean fuel. The current status of the research in developing OER catalysts shows that NiFe-based oxygen evolution catalysts (OECs) have been proven as excellent and remarkable candidates for this purpose. But it is critically important to understand the factors that influence their activity and underlying mechanism for the development of state-of-the-art OER catalysts. Therefore, the development of in-situ/operando characterizations is urgently required to detect key …


In Situ Characterization Of Electrode Structure And Catalytic Processes In The Electrocatalytic Oxygen Reduction Reaction, Ya-Chen Feng, Xiang Wang, Yu-Qi Wang, Hui-Juan Yan, Dong Wang Mar 2022

In Situ Characterization Of Electrode Structure And Catalytic Processes In The Electrocatalytic Oxygen Reduction Reaction, Ya-Chen Feng, Xiang Wang, Yu-Qi Wang, Hui-Juan Yan, Dong Wang

Journal of Electrochemistry

As an electrochemical energy conversion system, fuel cell has the advantages of high energy conversion efficiency and high cleanliness. Oxygen reduction reaction (ORR), as an important cathode reaction in fuel cells, has received extensive attention. At present, the electrocatalysts are still one of the key materials restricting the further commercialization of fuel cells. The fundamental understanding on the catalytic mechanism of ORR is conducive to the development of electrocatalysts with the enhanced activity and high selectivity. This review aims to summarize the in situ characterization techniques used to study ORR. From this perspective, we first briefly introduce the advantages of …


A Flexible Enzymeless Glucose Sensor Via Electrodepositing 3d Flower-Like Cos Onto Self-Supporting Graphene Tape Electrode, Jiang Li, Zuo-Peng Li, Yun-Feng Bai, Su-Xing Luo, Yong Guo, Ya-Yan Bao, Rong Li, Hai-Yan Liu, Feng Feng Jan 2022

A Flexible Enzymeless Glucose Sensor Via Electrodepositing 3d Flower-Like Cos Onto Self-Supporting Graphene Tape Electrode, Jiang Li, Zuo-Peng Li, Yun-Feng Bai, Su-Xing Luo, Yong Guo, Ya-Yan Bao, Rong Li, Hai-Yan Liu, Feng Feng

Journal of Electrochemistry

Three-dimensional (3D) nanostructural Flower-like cobalt sulfide (CoS) on flexible self-supporting graphene tape electrode (GTE) with remarkably electrocatalytic activity toward glucose was successfully prepared by electrodeposition. Structural characterizations revealed that the electrodeposited CoS was highly dispersed on GTE as an active material. The fabricated binder-free and self-standing CoS/GTE shows a good linear response in the range of 0.025 ~ 1.0 mmol·L-1, reaching a high glucose sensitivity value of 323.3 μA·(mmol·L -1)-1·cm-2 and a low detection limit of 8.5 μmol·L -1 (S/N = 3). Moreover, the as-prepared sensor was well applied for glucose determination in human serum. Thus, the …